期刊文献+

短时交通流预测WT-AOSVR模型 被引量:3

WT-AOSVR MODELS FOR SHORT-TIME TRAFFIC FLOW PREDICTION
在线阅读 下载PDF
导出
摘要 AOSVR(Accurate Online Support Vector Regression)具有在线学习和模型在线更新的优点,可应用于交通流量的实时预测,其中算法的核函数的选择对模型的学习、推广和泛化能力起着重要的作用,但是至今有关核函数的选择缺乏科学的理论依据。为了进一步提高模型的学习和推广能力等,提出一种WT-AOSVR(Weight Table And Accurate Online Support Vector Regression)模型。对交通流进行数据挖掘,分类处理,构造支路AOSVR模型和权值表,在交通流预测时,通过搜索权值表就可以得到多条支路模型的一种加权组合模型。仿真实验表明该方法既提高了模型学习精度又保证了模型的泛化和推广能力,具有一定的应用价值。 AOSVR takes the advantage of online learning and online updating its model and can be used in real-time prediction of traffic flow. In it the selection of kernel function of the algorithm plays an important role in model' s learning, promotion and generalisation ability. However, until now there lacks the scientific and theoretical basis in regard to the choice of kernel functions. In order to further improve the learning and promotion ability of the model, we bring forward a new method, WT-AOSVR (weight table and accurate online support vector regression) model. It makes data mining and classified processing on the traffic flow, constructs branch AOSVR models and the weight table. When forecasting the traffic flow, by searching the weight table it is able to obtain a kind of weighted composition model for multiple branch models. Simulation experiments show that this method is effective: it improves the learning accuracy of the model as well as ensures the generalisation and promotion ability of the model, and has certain applied value.
作者 李茂同 袁健
出处 《计算机应用与软件》 CSCD 北大核心 2013年第1期277-280,共4页 Computer Applications and Software
关键词 交通流 预测 权值表 AOSVR分类树 Traffic flow Prediction Weight table AOSVR Classification tree
  • 相关文献

参考文献8

二级参考文献25

共引文献93

同被引文献30

  • 1杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:84
  • 2倪敏玮,潘荫荣,胡幼华.基于JMS异步消息的心跳监听设计与实现[J].计算机应用与软件,2007,24(4):96-98. 被引量:2
  • 3董超俊,刘智勇.多层混沌神经网络及其在交通量预测中的应用[J].系统仿真学报,2007,19(19):4450-4453. 被引量:24
  • 4Williams B M,Durvasula P K,Brown D E.Urban freeway traffic flow prediction:Application of seasonal autoregressive integrated moving average and exponential smoothing models[J].Transportation Research Record,1998,1644:132-144.
  • 5Smith B L,Demetsky M J.Traffic flow forecasting:comparison of modeling approaches[J].Journal of Transportation Engineering,1997,123 (4):261-266.
  • 6Stathopouos A,Karlaftis A S.A multivariate state space approach for urban traffic flow modeling and prediction[J].Transportation Research Part C,2003,11:121-135.
  • 7Chandra S R,Al-Deek H.Predictions of freeway traffic speeds and volumes using vector autoregressive models[J].Journal of Intelligent Transportation Systems 2009,13 (2):53-72.
  • 8Min W,Wynter L.Real-time road traffic prediction with spatio-temporal correlations[J].Transportation Research Part C,2011,19:606-616.
  • 9Elad M.Sparse and redundant representations-From theory to application in signal and image processing[M].New York:Springer,2010.
  • 10MaYi —lin,Shao Chun - fu, Shu Shi. Short - term trafficstate forecasting of road network based on nonparametric re-gression[ C]. Proc of National Conf. Artificial Intelligence,2007: 535-540.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部