期刊文献+

一种中文微博观点抽取技术 被引量:2

Study on Viewpoint Extraction of Chinese Mircoblog
原文传递
导出
摘要 随着微博技术的不断发展,越来越多的用户喜欢在微博上发表自己对某件事或某个问题的观点看法。找出一个可以有效的判断评论对某事件所持态度的方法也日益引起人们的关注,观点信息抽取也成为一个重要的研究课题。文章提出的是一种自动识别评论态度的方法,主要是用微博文本中表情动画、动词以及句型等特征信息来构造特征集,并根据这个特征集生成特征向量,利用SVM分类器生成测试模型。实验结果表明,该方法取得了较好的系统性能。 With the continuous development of microblog technology, more and more people would like to give their views on some hot topics in their microblog, and thus how to get the information about the attitude of comments to hot topics receives much attention from the people. Opinion extraction now becomes one of the important research subjects. This paper proposes a systemic project about distinguishing the viewpoints of the comments. In this work, the features like emoticons in microblogs, verb and sentence patterns etc should be picked up to construct a feature set, then feature vectors are produced, and test model is made by using SVM classifier. The experimental results show that this method is of high system performance.
作者 王政霄 黄征
出处 《信息安全与通信保密》 2013年第1期49-50,53,共3页 Information Security and Communications Privacy
关键词 微博 观点抽取 表情符号 SVM分类器 Mircoblog viewpoint extraction emoticons SVM classifier
  • 相关文献

参考文献10

二级参考文献87

  • 1胡国胜.支持向量机算法及应用[J].现代电子技术,2005,28(3):106-109. 被引量:21
  • 2梁晗,陈群秀,吴平博.基于事件框架的信息抽取系统[J].中文信息学报,2006,20(2):40-46. 被引量:38
  • 3张好,王士林,李生红.基于内容图像分类技术中的特征分析[J].信息安全与通信保密,2006,28(11):74-76. 被引量:8
  • 4徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 5Lowe D G. Distinctive Image Features from Scale- Invariant Keypoints[J]. International Journal of Computer Vision, 2004(01): 91-110.
  • 6Hartigan J A, Wong M A. A K-Means Clustering Algorithm[J]. Applied Statistics, 1979(28). 100- 108.
  • 7林智仁. LIBSVM[DB/OL]. (2009-04-01) [2009-06- 03]. http: //www.csie.ntu.edu.tw/-cjlin/libsvm/.
  • 8ACE(Automatic Content Extraction) Chinese Annotation Gui - delines for Events [M]. National Institute of Standards and Technology, 2005.
  • 9Surdeanu M, Harabagiu S, Williams J, et al. Using Predicate-Argument Structures for Information Extraction[C]// Proceedings of ACL. 2003,8-15.
  • 10Surdeanu M, Harabagiu S. Infrastructure for open-domain information extraction [C]//Proceedings of the Human Language Technology Conference. 2002 : 325-330.

共引文献354

同被引文献20

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部