期刊文献+

协同过滤推荐瓶颈问题综述 被引量:10

Collaborative Filtering Recommendation Bottlenecks Review
在线阅读 下载PDF
导出
摘要 个性化推荐使得用户从浩瀚信息检索查找中解放出来,成为一种继搜索引擎之后获取信息的重要方式。协同过滤因为其算法简单,能够处理复杂对象,并且推荐效果优异,成为个性化推荐中最成功和应用最广泛的技术。但随着推荐系统规模扩大,协同过滤受到了数据稀疏性、冷启动和可扩展性等瓶颈问题严重挑战。本文总结了传统协同过滤推荐技术流程,重点研究了解决协同过滤瓶颈问题的方案,分析了它们各自的优缺点,便于后续实现协同过滤推荐系统时方案的选择和使用。 The personalized recommendation, through which users are free from the vast information retrieval, is an important way to obtain information after search engine. Collaborative filtering, a simple algorithm, is able to handle complicate objects and have good reommendations, becoming the most successful and the most widely used technology in personalized recommendation. However, collaborative filtering suffers serious challenges from data sparseness problem, cold start problem and scalability problem with the expansion of recommendation system. This article summarizes the traditional collaborative filtering recommendaion process,mainly researches solutions of problem of collaborative filtering bottleneck and analyzes the advantages and disadvantages of the solutions, In order to facilitate the follow-up selection of the solutions.
作者 曹一鸣
出处 《软件》 2012年第12期315-321,共7页 Software
关键词 个性化推荐 协同过滤 数据稀疏性问题 冷启动问题 可扩展性问题 personal recommendation collaborative filtering data sparseness problem cold start problem scalability problem
  • 相关文献

参考文献26

  • 1MingSheng Shang, ZiKe Zhang, TaoZhou. Collaborative filtering with diffusion-based similarity on tripartite graphs[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(6): 259-1264.
  • 2Greg Linden, Brent Smith, Jeremy York. Amazon.corn recommendations., item-to-item collaborative Filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 3Andrew I. Schein, Lyle H. Ungar, David M.Pennock. Methods and metrics for cold-start recommendations[J]. Research and development in information retrieval, 2012,22(1): 253-260.
  • 4Zan Huang, Hsinchun Chen, Daniel Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering[J]. ACM Transactions on Inlormation Systems, 2004, 22(1): 116-142.
  • 5Yehuda Koren, Robert Bell. Advances in collaborative filtering[M]. US: Recommender Systems Handbook, 2011.
  • 6Qi Qi, Zhengyu Chen, lia Liu. Using inferred tag ratings to improve user-based collaborative filtering[Z]. New York:Proceedings of the 27th Annual ACM Symposium on Applied Computing, 2012.
  • 7Ning Ye, Shuo Zhang, Xia Huang, lian Zhu. CotIaborative Filtering Recommendation Algorithm Based on Item Clustering and Global Similarity[J]. Business Intelligence and Financial Engineering, 2012, 23(1): 69-72.
  • 8Karen H.L. Tso-Sutter, Leandro Balby Marinho, Lars Schmidt-Thieme. Tag-aware recommender systems by fusion of collaborative filtering algorithms[Z]. New York:Proceedings of the 2008 ACM symposium on Applied computing, 2008.
  • 9Nathan N. Liu, Min Zhao, Evan Xiang, Qiang Yang. Online evolutionary collaborative filtering[Z].New York: Proceedings of the fourth ACM conference on Recommender systems, 2010.
  • 10Heung-Nam Kim, Ae-Ttie Ji, Inay Ha, Geun-Sik Jo. Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation[J]. Electronic Commerce Research and Applications, 2010, 9(1): 73-83.

二级参考文献30

共引文献726

同被引文献68

  • 1颜龙杰.基于近邻评分预测的协同过滤推荐算法[J].软件,2013,34(8):63-66. 被引量:14
  • 2吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:50
  • 3David Goldberg,David Nichols,Brian M. Oki,Douglas Terry.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM.1992(12)
  • 4Ken Goldberg,Theresa Roeder,Dhruv Gupta,Chris Perkins.Eigentaste: A Constant Time Collaborative Filtering Algorithm[J]. Information Retrieval . 2001 (2)
  • 5He Ying, Yang Shaoyu, Jiao Chenbin. A hybrid collaborative filtering recommendation algorithm for solving the data sparsity [ M ]. Washing- ton DC : IEEE Computer Society ,2011 : 118-121.
  • 6Scholz B, Choi S M, Ko S K, et al. A recommendation system based on a subset of raters [ M ]. [ S. 1. ] : Association for Computing Ma-ehinery ,2012:99-108.
  • 7Karatzoglou A, Amatriain X, Baltrunas L, et al. Multiverse recom- mendation:n-dimensional tensor factorization for context-aware collab- orative filtering[ C ]//Proc of ACM Conference on Recommender Sys- tem. IS. 1. ] :ACM Press,2010:79-86.
  • 8周子亮.合非负矩阵分解的推荐算法及框架研究[D].北京:北京交通大学,2013.
  • 9Wang Jingjin, Lin Kunhui, Li Jia. A collaborative filtering recom- mendation algorithm based on user clustering and slope one scheme [ C]//Proc of the 8th International Conference on Computer Science & Education. [ S. 1. ~ :IEEE Computer Society,2013:1473-1476.
  • 10刘青史.基于协同过滤的推荐算法研究[D],合肥:中国科学技术大学,2013.

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部