期刊文献+

基于迭代学习的离散线性时变系统故障诊断 被引量:5

Fault diagnosis of discrete linear time-varying system based on iterative learning
原文传递
导出
摘要 针对一类离散线性时变系统的故障诊断问题,提出一种新的故障检测与估计算法.该算法通过引入虚拟故障构建离散故障跟踪估计器,在选取的优化时域内,利用估计器输出和系统实际输出产生的残差信号,采用迭代学习算法来调节虚拟故障,使虚拟故障逼近系统中实际发生的故障,从而达到对系统故障诊断的目的.该方法不仅能检测出系统不同类型的故障,还可以实现对故障信号的精确估计.仿真结果验证了所提出方法的有效性. Aiming at the fault diagnosis in a class of discrete linear time-varying system, a novel fault detection and estimation algorithm is proposed. This algorithm uses an introduced virtual fault to construct a discrete fault tracking estimator, and then uses the iterative learning algorithm to regulate the virtue fault close to the practical fault based on the difference between outputs of the estimator and the practical system within the chosen optimization time, thereby reaching the end of the fault diagnosis. This algorithm not only can detect the different-type fault of the system, but also can estimate the fault signal accurately. Simulation results show the effectiveness of this algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2013年第1期137-140,146,共5页 Control and Decision
基金 国家自然科学基金项目(60672015) 黑龙江省教育厅基金项目(11541390)
关键词 离散线性时变系统 迭代学习 虚拟故障 故障诊断 discrete linear time-varying system iterative learning virtual fault fault diagnosis
  • 相关文献

参考文献14

二级参考文献100

共引文献68

同被引文献38

  • 1李书进,李文华.基于自适应卡尔曼滤波的时变结构参数估计[J].广西大学学报(自然科学版),2004,29(2):146-149. 被引量:10
  • 2JinJiang.Fault-tolerant Control Systems-An Introductory Overview[J].自动化学报,2005,31(1):161-174. 被引量:30
  • 3Yuan L E He Y G, Huang J Y, et al. A new neural-network- based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor[J]. IEEE Trans on Instrumentation and Measurement, 2010, 59(3): 586-595.
  • 4Chen X Y, Zhou J Z, Xiao H, et al. Fault diagnosis based on comprehensive geometric characteristic and probability neural network[J]. Applied Mathematics and Computation, 2014, 230(1): 542-554.
  • 5Li X J, Yang G H. Fault diagnosis for non-linear single output systems based on adaptive high-gain observer[J]. lET Control Theory & Applications, 2013, 7(16): 1969- 1977.
  • 6Shen Q, Jiang B, Shi P. Adaptive fault diagnosis for T-S fuzzy systems with sensor faults and system performance analysis[J]. IEEE Trans on Fuzzy Systems, 2014, 22(2): 274-285.
  • 7Ma H J, Yang G H. Detection and adaptive accommodation for actuator faults of a class of nonlinear systems[J], lET Control Theory & Applications, 2012, 6(14): 2292-2307.
  • 8Zhang J, Swain A K, Nguang S K. Detection and isolation of incipient sensor faults for a class of uncertain non-linear systems[J], lET Control Theory & Applications, 2012, 6(12): 1870-1880.
  • 9Tan C P, Edwards C. Sliding mode observers for reconstruction of simultaneous actuator and sensor faults[C]. Proc of the 42nd IEEE Conf on Decision and Control. New York: IEEE Press, 2003: 1455-1460.
  • 10DING F, CHEN T. Performance bounds of forgetting fac-tor least-squares algorithms for time-varying systems withfinite measurement data [ J ]. Circuits and Systems,2012,52(3) : 555-566.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部