期刊文献+

Calculation of relative permeability in reservoir engineering using an interacting triangular tube bundle model 被引量:2

Calculation of relative permeability in reservoir engineering using an interacting triangular tube bundle model
原文传递
导出
摘要 Analytical expressions of relative permeability are derived for an interacting cylindrical tube bundle model. Equations for determining relative permeability curves from both the interacting uniform and interacting serial types of triangular tube bundle models are presented. Model parameters affecting the trend of relative permeability curves are discussed. Interacting triangular tube bundle models are used to history-match laboratory displacement experiments to determine the relative permeability curves of actual core samples. By adjusting model parameters to match the history ofoil production and pressure drop, the estimated relative permeability curves provide a connection between the macroscopic flow behavior and the pore-scale characteristics of core samples. Analytical expressions of relative permeability are derived for an interacting cylindrical tube bundle model. Equations for determining relative permeability curves from both the interacting uniform and interacting serial types of triangular tube bundle models are presented. Model parameters affecting the trend of relative permeability curves are discussed. Interacting triangular tube bundle models are used to history-match laboratory displacement experiments to determine the relative permeability curves of actual core samples. By adjusting model parameters to match the history ofoil production and pressure drop, the estimated relative permeability curves provide a connection between the macroscopic flow behavior and the pore-scale characteristics of core samples.
出处 《Particuology》 SCIE EI CAS CSCD 2012年第6期710-721,共12页 颗粒学报(英文版)
基金 the support of the research from the Natural Sciences and Engineering Research Council of Canada (NSERC) the Doctoral Program Foundation of China (Project No.:2011013311007)
关键词 Interacting tube bundle modelPorous mediaModelingRelative permeability Imbibition Interacting tube bundle modelPorous mediaModelingRelative permeability Imbibition
  • 相关文献

参考文献24

  • 1Payatakes, A. C., Tien, C.,82 Turian, R M. (1973). A new model for granular porous media: Part 1. model formulation. AIChEJournal, 19, 58-67.
  • 2Langglois, W. E. (1964). Slow viscousfiow. New York: The Macmillan Company.
  • 3Mogensen, K., & Stenby, E. H. (1998). A dynamic two-phase pore-scale model of imbibition. Transport in Porous Media, 32, 299-327.
  • 4Dullien, F. A. L., Zarcone, C., MacDonald, 1. F., Collins, A., & Bochard, R. D. E. (1989). The effects of surface roughness on the capillary pressure curves and the heights of capillary rise in glass bead packs.Journal of Colloid und Interface Science, 127(2), 362-372.
  • 5Dong, M., Dullien, F. A. L., & Zhou, J. (1998). Characterization of waterflood saturation profile histories by the 'Complete' capillary number. Transport in Porous media, 31,213-237.
  • 6Bartley, J. T., & Ruth, D. W. (1999). Relative permeability analysis of tube bundle models. Transport in Porous Media, 36, 161-187,.
  • 7Mason, G, & Morrow, N. R. (1991). Capillary behavior of a perfect wetting liquid in irregular triangular tubes.Journal of Colloid and Interface Science, 141,262-274.
  • 8Li, Y., & Wardlaw, N. C. (1986). The influence of wettability and critical pore-throat size ratio on snap-off.Journal of Colloid and Interface Science, 109(2), 461-472.
  • 9Blunt, M. J. (1997). Effects of heterogeneity and wetting on relative permeability using pore level model. SPE [ournal, 2, 70-87.
  • 10Fatt, 1. (1956). The network model of porous media 1. Capillary pressure character- istics. Transactions AIME, 207, 144-159.

共引文献372

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部