期刊文献+

奇性方腔黏性流动的完全高精度紧致差分方法 被引量:1

Fully Fourth-order Compact Finite Difference Schemes for Viscous Flow in Singular Square Cavity
在线阅读 下载PDF
导出
摘要 以涡量流函数形式的Navier-Stokes(N-S)方程为例,详细介绍了构造完全高精度紧致差分格式的一般方法.所建立的高精度差分格式,无论是在计算区域的内点还是在边界点上均可以达到4阶精度,且具有紧致性,与已有数值实验结果相比只需要用很少的网格(61×61)就可以求得较高计算精度的数值解,从而大大节省了计算时间,提高了计算效率. This paper describes a fully higher-order compact finite difference scheme for solving 2D Navier-Stokes (N-S) equa tions representing streamfunction and vorticity form of the steady-state incompressible viscous fluid flows. The scheme maintains a fourth-order of spatial accuracy not only in the interior but also at the boundary. For the 2D driven cavity problem with known existing solutions, our coarse grids transient solutions are extremely close to the analytical ones even for high Reynolds numbers (Re= 5000). Comparisons are made with the established numerical results and excellent agreement isfound in all the cases, both qualitatively and quantitatively.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期14-18,22,共6页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅自然科学研究项目(2010B110015)
关键词 奇性方腔 完全高精度 紧致差分格式 伪时间导数 singular square cavity fully higher-order compact finite difference scheme pseudo-time derivative
  • 相关文献

参考文献9

  • 1Kalita J C,Ray R K.A transformation-free HOC scheme for incompressible viscous flows past an impulsively started circular cylinder[J].J Comput Phys,2009,228(14):5207-5236.
  • 2Zhang K K Q,Shotorban B,Minkowycz W J,et al.A compact finite difference method on staggered grid for Navier-Stokes flows[J].Int J Numer Methods Fluids,2006,52(8):867-881.
  • 3Ge L,Zhang J.High accuracy iteration solution of convection diffusion equation with boundary layers on uniform grids[J].J Comput Phys,2005,171(2):560-578.
  • 4Erturk E,Corke T C,Gkcl C.Numerical solutions of2-D steady incompressible driven cavity flow at high Reynolds numbers[J].Int J Numer Methods Fluids,2005,48(7):747-774.
  • 5Botella O,Peyret R.Benchmark spectral results on the lid-driven cavity flow[J].Computers Fluids,1998,27(4):421-433.
  • 6Schreiber R,Keller H B.Driven cavity flows by efficient numerical techniques[J].J Comput Phys,1983,49(2):310-333.
  • 7Wright N G,Gaskell P H.An effcient multigrid approach to solving highly recirculating flows[J].Computers Fluids,1995,24(1):63-79.
  • 8Nishida H,Satofuka N.Higher-order solutions of square driven cavity flow using a variable-order multi-grid method[J].Int J Numer Methods Fluids,1992,34(2):637-653.
  • 9Erturk E,Gkcl C.Fourth order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers[J].Int J Numer Methods Fluids,2006,50(4):421-436.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部