期刊文献+

基于蚁群算法的IP网络流量矩阵估计 被引量:1

IP traffic matrix estimation based on ant colony optimization
在线阅读 下载PDF
导出
摘要 针对IP网络流量矩阵(TM)估计的高度病态性,导致很难精确估计网络流量矩阵,因此提出了一种基于蚁群优化(ACO)算法的IP网络流量矩阵估计方法。通过适当的建模,将流量矩阵估计问题转化为最优化问题,再通过蚁群算法求解模型,有效解决了网络流量矩阵估计。通过测试结果分析,与现存的方法相比,所提算法的精度比最大熵和二次规划稍差,但这两种方法复杂度太高,不适用于大规模网络,因此,在网络规模较大的情况下,算法是较优的,可提高流量矩阵估计的精度。 It is very difficult to estimate the Traffic Matrix (TM) of the network, because it is a highly ill-posed problem. To solve the problem, a traffic matrix estimation method based on the Ant Colony Optimization (ACO) algorithm was proposed. Through appropriate modeling, the traffic matrix estimation problem was transformed into the optimization problem, and then the model was solved by ACO algorithm, which could effectively estimate the traffic matrix. Through the test results, compared with the existing methods, the accuracy of proposed algorithm is a bit weaker than entropy maximization and quadratic programming. But these two methods have high complexity, and they cannot be applied to large-scale network. Therefore, in the large-scale network, the proposed algorithm is better. It can improve the accuracy of traffic matrix estimation.
作者 魏多 吕光宏
出处 《计算机应用》 CSCD 北大核心 2013年第1期92-95,共4页 journal of Computer Applications
关键词 IP网络 源-目的流 流量矩阵估计 蚁群优化算法 IP network Origin-Destination (OD) flow Traffic Matrix (TM) estimation Ant Colony Optimization (ACO) algorithm
  • 相关文献

参考文献12

  • 1TAN L, WANG X. A novel method to estimate IP traffic matrix [ J]. IEEE Communication Letters, 2007, 11(11) : 907 - 909.
  • 2ZHANG Y, ROUGHAN M, LUND C, et al. An information theo- retic approach to traffic matrix estimation [ C]// Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. New York: ACM Press, 2003:25 - 29.
  • 3CAO J, DAVIS D, vander WEIL S, et al. Time-varying network tomography: router link data [ J]. Journal of the American Statistical Association, 2000, 95(452) : 1063 - 1075.
  • 4TEBALDI C, WEST M. Bayesian inference on network traffic using link count data [ J]. Journal of the American Statistical Association, 1998, 93(442): 557-576.
  • 5JIANG D D, HUG M. Large-scale IP traffic matrix estimation based on the recurrent multilayer perceptron network [ C]//ICC'08:2008 IEEE International Conference on Communication. Washington, DC: IEEE Computer Society, 2008:229-232.
  • 6YI J, SHANG F J, ZOU Y, et al. A GA approach for traffic matrix estimation [ C]//IC-BNMT'09: Proceedings of the 2nd 1EEE Inter- national Conference on Broadband Network & Multimedia Technolo- gy. Washington, DC: IEEE Computer Society, 2009:252-256.
  • 7DORIGO M, BIRATYARI M, STUTZLE T. Ant colony oPtimization [ J]. IEEE Computational Intelligence Magazine, 2006, 1 (4) : 28 -39.
  • 8LI Z, CHEN X H, WANG H. Modified ACO for general continuous function optimization [ C]// ISDEA 2012: Proceedings of the Sec- ond International Conference on Intelligent System Design and Engi- neering Application. Washington, DC: IEEE Computer Society, 2012:348-354.
  • 9XUE X, SUN W, PENG C S. Improved ant colony algorithm for continuous function optimization [ C]// 2010 Chinese Control and Decision Conference. Piseataway: IEEE Press, 2010:20-24.
  • 10ADELANI T O, ALFA A S. Hybrid techniques for large-scale IP traffic matrix estimation [ C]//2010 IEEE International Conference on Communications. Washington, DC: IEEE Computer Society, 2010:1-6.

二级参考文献36

  • 1Feldmann A, Greenberg A, Lund C, et al. Deriving Traffic Demand for Operational IP Networks: Methodology and Experience[J]. IEEE/ACM Transactions on Networking, Jun 2001, 9(03): 265-279.
  • 2Duffield N G,6Grossglauser M. Trajectory Sampling for Direct Traffic Observation[J]. IEEE/ACM Transactions on Networking, June 2001, 9 (3): 280-292.
  • 3Varghese G, Estan C, Savage S. Automatically Inferring Patterns of Resource Consumption in Network Traffic[C]. In:Proe. of the ACM SIGCOMM 2003, on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM Press. 2003: 137-148.
  • 4Coates M, Hero A, Nowak R, et al. Large Scale Inference and Tomography for Network Monitoring and Diagnosis[EB/OL]. http://www.stat. berkeley, edu/techreports/604, ps.Z. 2001.
  • 5Zhang Y, Roughan M, Duffield N, et al. Fast accurate computation of large-scale IP traffic matrices from link loads[J]. ACM SIGMETRICS Performance Evaluation Review, 2003, 31 (1) :206-217.
  • 6Medina A, Taft N, Salamatian K, et al. Traffic matrix estimation: existing techniques and new directions[A]. In:Paxson V, Balakrishnan H, eds. Proc. of the ACM S IGCOMM 2002 on Applications, Technologies, Architectures, and Protocols for Computer Communications, Pittsburgh: ACM Press. 2002:161-174.
  • 7Vaton S, Gravey A. Network Tomography: An iterative Bayesian analysis[A]. In: Charzinski J, Lehnert R, Tran -Gia P, eds. Proc. Of the 18th Int' 1 Teletraffic Congress (ITC), Berlin:[s.n.], 2003: 261-270.
  • 8Goldschmidt O. ISP backbone traffic inference methods to support traffic engineering[EB/OL], http://www.caida.org/ workshops/isma/0012/talks/olivier/, 2000.
  • 9Vardi Y. Network Tomography: Estimating source-destination traffic intensities from link data[J]. Journal of the American Statistical Association, 1996, 91(433):365-377.
  • 10Tebaldi C, West M. Bayesian inference on network traffic using link count data[J]. Journal of the American Statistical Association, 1998,93(442):557-576.

共引文献5

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部