期刊文献+

基于改进主动轮廓模型的图像分割算法 被引量:3

Image Segmentation Algorithm Based on Improved Active Contour Model
在线阅读 下载PDF
导出
摘要 针对C-V模型对灰度不均匀的图像分割效果不理想的情况,提出一种改进的C-V模型。该模型在C-V模型的基础上,引入非加权的邻域平均和局部窗口方差概念,加快并精确了C-V模型的演化效果,同时在C-V模型的能量函数中加入惩罚项,使得C-V模型在演化过程中无须重新初始化,进一步提高了分割速度。仿真实验结果表明改进的C-V模型较原模型对灰度不均匀图像分割具有较好的分割效果。 Aiming at the problem of the ineffective segmentation results of the non-uniform gray images for CV model, an improved C-V model is presented. The model, which is on the basis of the C-V model, can accelerate and make an accurate C-V model evolution effects by introducing the concept of the non-weighted neighborhood averaging and the local window variance. Meanwhile, the penalty term is put in the C-V model energy function in order to avoid the re - initialization in the process of evolution of the C-V model and improve the segmentation speed. Simulation results show that the improved CV model has better segmentation effect than the original model in the non -uniform gray images.
出处 《电视技术》 北大核心 2013年第1期41-44,共4页 Video Engineering
基金 山西省自然科学基金项目(2009011018-2)
关键词 图像分割 CHAN-VESE模型 邻域平均 局部方差 Image segmentation Chan-Vese model neighborhood averaging local variance
  • 相关文献

参考文献11

  • 1尹红梅,朱再新.基于动态轮廓的彩色多人脸检测[J].电视技术,2007,31(B08):134-136. 被引量:3
  • 2刘喜英,吴淑泉,徐向民.基于区域生长法的医学图像分割研究[J].电视技术,2003,27(9):24-25. 被引量:5
  • 3吴继明,朱学峰,熊建文.基于全局主动轮廓模型的图像分割研究[J].计算机应用与软件,2010,27(8):103-106. 被引量:2
  • 4CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [ J ]. In- ternational Journal on Computer Vision, 1997,22( 1 ) :61-79.
  • 5CHAN T,VESS L Active contours without edges[J]. IEEE Trans. Image Processing,2001,10(2) :266-277.
  • 6KIM J,FISHER J, YEZZI A, et al. A nonparametrie statistical method for image segmentation using information theory and curve evolution [ J ]. IEEE Trans. Image Processing,2005,14(10) : 1486-1502.
  • 7SUM K,CHEUNG. A novel active contour model using local and global statistics for vessel extraction [ J ]. Engineering in Medicine and Biology Society, 2006 : 3126 -3129.
  • 8BROX T,CREMERS D. On the statistical interpretation of the piecewise smooth mumford-shah functional [ J]. Scale Space and Variational Meth- ods in Computer Vision,2007:203-213.
  • 9张思维.一种加快的CV模型分割方法研究[J].天中学刊,2011,26(5):13-16. 被引量:3
  • 10WANG Xiaofeng, HUANG Deshuang,XU Huao. An etiicient local Chan- Vese model for image segmentation [ J ]. Pattern Recognition, 2010,43 (3) :603-618.

二级参考文献21

  • 1胡元奎,汪增福.可变光照条件下的人脸图像识别[J].中国图象图形学报,2005,10(7):844-849. 被引量:3
  • 2Vese L,Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
  • 3Tsai A,Yezzi A,Willsky A S.Curve evolution implementation of the mumford-shah functional for image segmentation,denosing,interpolation,and magnification[J].IEEE Transaction on Image Processing,2001,10:1169-1186.
  • 4An J,Rousson M,Xu C.λ-convergence approximation to piecewise smooth medical segmentation[C]//Proc:Medical Image Computing,2007,4792:495-502.
  • 5Shawn Lankton,nain D,Yezzi A.Hybrid geodesic region -based curve evolutions for image segmentation[C]//Proc.SPIE:Medical Image,2007,3,6510:65104U.
  • 6Mumford D,Shah J.Optimal approximation by piecewise smooth functions and associated variational problems[J].Communications on Pure and Applied Mathmatics,1989,42:577-685.
  • 7Chan T,Vese L.Active contours without edge[J].IEEE Transaction on Image Processing,2001,10(2):266-277.
  • 8Alliney S.Digital Filters as Absolute NormRegularizers[J].IEEE Transactions on Signal Processing,1992,40(6):1548-1562.
  • 9Osher S, Serbian J A. Fronts propagating with curvaturedependent speed: algorithms based on Hamilton Jacobi formulations[J]. Journal of computational physics, 1988, 79: 12--49.
  • 10Tony F Chart, Luminita A Vese. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266--277.

共引文献7

同被引文献20

  • 1匡泰,朱清新,孙跃.FCM算法用于灰度图像分割的初始化方法的研究[J].计算机应用,2006,26(4):784-786. 被引量:15
  • 2丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 3王永久.引力理论[M].北京:科学出版社,2011.
  • 4CHUANG K,TZENG H,CHEN S,et al, Fuzzy C mean clustering with spatial information for image segmentation [ J ]. Elsevier Science, 2006 (30) :9-15.
  • 5WANG S. A new integrated clustering algorithm GFC and switching re- gressions [ J ]. Int. J. Pattern Recognition and Artificial Intelligence, 2002,16(4) :433-447.
  • 6GOKCAY E, PRINCIPE J. Information theoretic clustering[ J ]. IEEE Trans. PAM1,2002,24(2 ) : 158-171.
  • 7RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S. GSA: a gravita-tional search algorithm [ J ]. Information Sciences, 2009, 179 ( 3 ) : 2232-2248.
  • 8TAN K,ISA N. Color image segmentation using histogram thresholding- fuzzy C-means hybrid approach[ J ]. Pattern Recognition,2011,44( 1 ) : 1-15.
  • 9ZHANG H,FRITrS J,GOLDMAN S. An entropy-based objective evalua- tion method for image segmentation [ C]//Proc. Conference on Storage and Retrieval Methods and Applications for Multimedia. San Jose, CA: [ s. n. ] ,2003:38-49.
  • 10YU Z, OSCAR C ,ZOU R. An adapt unsupervised approach toward pixcl clustering and color image segmentation [ J ]. Pattern Reeognitian, 2010 (43) :1889-1906.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部