期刊文献+

结合ECOC与DS证据理论的多目标识别研究

Multi-class Target Recognition Based on Error-correcting Output Codes and DS Evidence Theory
在线阅读 下载PDF
导出
摘要 针对目标识别中多类分类的难点问题,提出了一种C-DSECOC多目标识别方法。该方法采用二符号纠错输出编码(binary Error-Correcting Output Codes)作为分解框架,采用DS证据理论作为解码策略,并结合ECOC结构特点对传统的DS证据理论进行重新构造。在确定DS基本概率赋函数值时引入损失函数,使BPA的获取除与二分器的输出有关外,还由其对不同类别样本的正确分类能力决定,从而提高ECOC集成的分类性能和泛化性能。实验中分别对UCI数据集和3种一维距离像数据集进行测试。结果表明,提出的C-DSECOC方法能有效地提高多类目标识别的正确率。 It is an open issue how to recognize the multi-class target in pattern recognition.This paper proposed a novel approach,called C-DSECOC.The binary ECOC is used as the decomposing frame to reduce multi-class to binary,and the DS evidence theory as decoding strategy.The confidence of base classifiers is estimated by loss function and fused into BPA,when considering the effect of difference in classification performance on target recognition,thus promoting the classification accuracy and generalization ability.Meanwhile,the mass function is reconstructed based on the structure features of ECOC.The experimental results based on UCI datasets and three kinds of HRRPS datasets with support vector machine(SVM) as the binary classifiers indicate that our approach can provide a better performance of classification.
出处 《计算机科学》 CSCD 北大核心 2012年第12期245-248,共4页 Computer Science
基金 国家自然科学基金(60975026)资助
关键词 纠错输出编码 DS证据理论 分类器可信度 损失函数 Binary ECOC DS evidence theory Classifiers' confidence Loss function
  • 相关文献

参考文献10

二级参考文献77

  • 1宋锐,张静,夏胜平,郁文贤.一种基于BP神经网络群的自适应分类方法及其应用[J].电子学报,2001,29(z1):1950-1953. 被引量:19
  • 2蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 3尹柯,何建忠.ISODATA高效迭代算法在基于内容的图像检索中的应用[J].安徽工业大学学报(自然科学版),2006,23(4):440-443. 被引量:2
  • 4田春娜,高新波,李洁.基于嵌入式Bootstrap的主动学习示例选择方法[J].计算机研究与发展,2006,43(10):1706-1712. 被引量:8
  • 5Leibe B,Leonardis A,Schiele B.Robust object detection with intedeaved categorization and segmentation[J].International Journal of Computer Vision Special Issue on learning for Recognition and Recognition for Learning,2008,77(1):259-289.
  • 6Felzanszwalb P F,Schwartz J D.Hierarchical matching of deformable shapes[C]//Proc 1EEE Conf Computer Vision and Pattern Recognition.2007:1-8.
  • 7Kumar M P,Torr P H S,Zisscrman A.Extending pictorial structures for object recngnition[C]//Proc British Machine Vision Conference.2004:1-8.
  • 8Fergns R,Pemus P,Zisserman A.Weakly supervised scale-invariant learning of models for visual recognition[J].International Journal of Computer Vision,2007,71(3):273-303.
  • 9Opelt A,Pinz A,Zisserman A.Incremental learning of object detectors using a visual shape alphabet[C]//Prec IEEE Conf Computer Vision and Pattern Recognition.2006:3-10.
  • 10Shotton J,Blake A,Cipolla R.Multi-scale categorical object recognition using contour fragments[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(7):1270-1281.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部