期刊文献+

零速修正技术在车载惯性导航中的应用研究 被引量:11

Study on Application of Zero Velocity Update Technology to Inertial Navigation System
在线阅读 下载PDF
导出
摘要 针对车载惯性导航系统由于无外部信息长时间运动导致的误差积累的问题,提出一种运用动态零速修正技术来提高导航精度的方法。利用零速修正技术的约束条件,构造观测量;用基于普条件数可观测理论对系统各状态进行了可观测性分析,确定卡尔曼滤波器的滤波效果,并进行仿真实验对姿态角误差、速度误差进行了估计。实验表明,在惯性导航系统中,零速修正技术很大程度上提高了导航的位置、速度、姿态信息,有效地确保了车载导航的导航精度。 According to the problem of prolonged navigation error accumulation without external information in vehicle inertial navigation system, a method of improving the navigation accuracy by using the dynamic zero velocity update technology was proposed. The observables were constructed by using the constraint conditions of the zero velocity update technology. First, the theory of spectral condition number was used to analyze the observability of error states and determine the effect of Kalman filter, then the attitude angle error, rate errors were estimated though the simulation experiment. Experiments showed that, in the inertial navigation system, zero velocity update technology improved the navigation position, velocity, attitude information greatly and effectively ensured the accuracy of vehicle navigation.
出处 《压电与声光》 CSCD 北大核心 2012年第6期843-847,852,共6页 Piezoelectrics & Acoustooptics
关键词 惯性导航 零速修正 可观测性 卡尔曼滤波 INS zero velocity update observability Kalman filter
  • 相关文献

参考文献6

二级参考文献21

  • 1侯永利,万彦辉.自主式车载组合导航系统误差修正技术研究[J].弹箭与制导学报,2006,26(S1):179-182. 被引量:3
  • 2李晓莹,胡敏,张鹏,常洪龙.交叠式Allan方差在微机械陀螺随机误差辨识中的应用[J].西北工业大学学报,2007,25(2):225-229. 被引量:26
  • 3ANDERSON B O, MOORE J B. Optimal filtering [M]. [ S. l.]:Prentice-Hall, 1979: 32.
  • 4WELCH G,BISHOP G. An introduction to the Kalman filer [ R]. North Carolina: University of North Carolina, 2004.
  • 5JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation [ C ]//Proceedings of the IEEE. Montana : Big Sky, 2004, 92(3) : 401-422.
  • 6WAN E A, MERWE R. The unscented Kalman filter for nonlinear estima-tion [ C ]//Proceedings of International Symposium on Adaptive Systems for Signal Processing Communications and Control Alberta. Canada:[s.n.], 2000, 12(2): 153-158.
  • 7MERWE R, DOUCET A, FREIAS D, et al. The unscented particle filter [ R ]. England : Cambridge University, 2000.
  • 8ARULAMPALAM M S, MASKELL S,GORDON N, et al. A tutorial on particle fihers for on-line nonlinear/non-gaussian bayesian tracking [ C ]//IEEE Transactions on Signal Processing. Hong Kong: University of Hong Kong, 2002, 50(2) : 174 -188.
  • 9DOUCET A. On sequential simulation-based methods for bayesian filtering [ R]. England: University of Cambridge, 1998.
  • 10GUSTAFSSON F. GUNNARSSON F. Particle filters for positioning navigation and tracking[C]//IEEE Transactions on Signal Processing. Oriando, Florida: University of Florida Tampa, 2002, 50(2) : 425 -437.

共引文献51

同被引文献78

引证文献11

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部