期刊文献+

面向不平衡数据集的SMOTE-SVM交通事件检测算法 被引量:10

Imbalanced Datasets Based SMOTE-SVM-AID Algorithm
原文传递
导出
摘要 针对现实中交通正常运行状态远多于事件状态这一事实,提出了面向不平衡数据集的交通事件检测算法。运用SMOTE(Synthetic Minority Over-sampling Technique)算法重构训练集,使之平衡,以支持向量机(Support VectorMachine,SVM)作为分类器,对交通事件进行检测。使用美国I-880高速公路获取的交通数据进行算法的训练和性能测试。结果表明,基于SMOTE-SVM的交通事件自动检测(Automatic Incident Detection,AID)算法可以提高检测率,减少平均检测时间。 Considering the fact that the traffic condition of normal operation is far more than that of event, we pro posed an AID (Automatic Incident Detection) algorithm based on imbalanced datasets. The SMOTE (Synthetic Minority Over-sampling Technique) algorithm was used to reconstruct and balance the training set, the SVM (Support Vector Ma chine) was adopted as the classifier to detect traffic incidents. Using actual traffic data from the America I-880 freeway, the proposed AID algorithm was trained and the performance of this algorithm was tested. The experimen results show that the AID algorithm based on SMOTE-SVM can improve the detection rate and reduce the testing time.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2012年第11期58-62,123,共6页 Journal of Wuhan University of Technology
基金 国家自然科学基金(61074141) 国家"863"计划(2011AA110302)
关键词 交通事件检测 不平衡数据集 SMOTE算法 支持向量机 traffic incident detection imbalanced datasets SMOTE algorithm support vector machine
  • 相关文献

参考文献20

  • 1Lindley J. Urban Freeway Congestion Problems Arid Solutions: An Update[J]. ITE Journal, 1989,60(12) : 21-23.
  • 2Zhang F. WHO Report Highlights Traffic Safety in China (Chinadaily)[EB/OL]. 2004-10-12. http://www, chinadaily. com. cn/english/doc/2004-10/12/content_381445, htm.
  • 3姜桂艳,温慧敏,杨兆升.高速公路交通事件自动检测系统与算法设计[J].交通运输工程学报,2001,1(1):77-81. 被引量:67
  • 4张敬磊,王晓原.交通事件检测算法研究进展[J].武汉理工大学学报(交通科学与工程版),2005,29(2):215-218. 被引量:56
  • 5Davide A, Andrea B. A Digital Architecture for Support Vector Machines: Theory, Algorithm, and FPGA Implementa- tion [J]. IEEE Trans on Neural Networks, 2003,14(5):993-1008.
  • 6Chen Shuyan, Wang Wei. Decision Tree Learning for Freeway Automatic Incident Detection[J]. Expert Systems with Applications, 2009,36 (2): 4101-4105.
  • 7Sun Y M, Rew K C Wong, Mohamed S Kamel. Classification of Imbalanced Data: A Review[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009,23 (4) : 687-719.
  • 8Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. Handling Imbalanced Datasets: A Review[J]. GESTS International Transactions on Computer Science and Engineering, 2006, 30(1) :25-36.
  • 9Cortes C, Vapnik V. Support Vector Networks [J]. Machine Learning, 1995,20(3):273-297.
  • 10Vapnik V N. Statistical Learning Theory [M] NewYork: Wiley, 1998.

二级参考文献38

共引文献424

同被引文献96

引证文献10

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部