期刊文献+

基于非结构化网格有限体积的LBM 被引量:2

Unstructured mesh finite volume LBM
在线阅读 下载PDF
导出
摘要 提出了一种基于非结构化网格有限体积的LBM.采用Cell-vertex有限体积法离散控制方程.该方法在时间上采用伪、实二时间步,其中伪时间步采用向前差分,实时间步采用二阶向后差分方法;空间上采用edge-based通量计算方法,采用高阶TVD格式计算控制体边界通量.离散后的控制方程采用隐式迭代,控制变量采用五层二阶Runge-Kutta方法求解.二维同心圆环内圆柱间Couette流与顶盖驱动方腔流的数值结果显示该方法为一种有效求解不规则边界流体动力特性的实用工具. A unstructured mesh finite volume LBM is presented.Cell-vertex finite volume method is used to discretize the governing equations.During the discretization in time,there are two-time steps,pseudo-time step and real time step respectively,in which forward scheme is used in former while the second order backward scheme is used in latter.In space,an edge-based flux calculating algorithm is adopted and higher order TVD scheme is utilized to calculate the flux through control volume interface.A strategy of implicit iteration is used for solving discrete governing equations and the second order five-layer Runge-Kutta method is utilized for the solution of variables.The simulating results of 2Dcylindrical-Couette flow and lid-driven cavity flow show that the proposed method is believed to be an effective tool for solving flow pattern of flow domain with irregular boundary.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2012年第6期809-815,共7页 Journal of Dalian University of Technology
基金 中央高校基本科研业务费专项资金资助项目(DUT10RC(3)91)
关键词 LBM 非结构化网格 有限体积法 LBM unstructured mesh finite volume method
  • 相关文献

参考文献19

  • 1Succi S, Amati G, Benzi R. Challenges in lattice Boltzmann computing [J]. Journal of Statistical Physics, 1995, 81(1-2) :5-16.
  • 2CHEN Shi-yi, Doolen G D. Lattice Boltzmann method for fluid flow [J]. Annual Review of Fluid Mechanics, 1998, 30 (1) : 329-364.
  • 3Hardy J, Pomeau Y, de Pazzis O. Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions [J].Journal of Mathematical Physics, 1973, 14(12) : 1746-1759.
  • 4Hardy J, de Pazzis O, Pomeau Y. Molecular dynamics of a classical lattice gas: Transportproperties and time correlation functions Physical Review A, 1976, 13(5):1949-1961.
  • 5HE Xiao-yi, LUO Li-shi. A prior derivation of the lattice Boltzmann equation[J].Physical Review E, 1997, 55(6) :6333-6336.
  • 6Nannelli F, Succi S. The lattice Boltzmann equation on irregular lattices [J].Journal of Statistical Physics, 1992, 68(3-4) :401-407.
  • 7HE Xiao-yi, LUO Li-shi, Dembo M. Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids [ J ]. Journal of Computational Physics, ]996, 129(2) :357-363.
  • 8XI Hao-wen, PENG Gong-wen, Chou So-hsiang. Finite volume lattice Boltzmann method [J]. Physical Review E, 1999, 59(5) :6202-6205.
  • 9CHEN Hu-dong. Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept [J].Physical Review E, 1998, 58(3) :3955- 3963.
  • 10Ubertini S, Bella G, Succi S, Lattice Boltzmann method on unstructured grids:Further developments [J].Physical Review E, 2003, 68(1):016701-10.

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部