期刊文献+

成对约束指导的稀疏保持投影 被引量:1

Pairwise constraint-guided sparsity preserving projections
在线阅读 下载PDF
导出
摘要 针对稀疏保持投影的稀疏重构过程中监督信息不足的问题,提出一种成对约束指导的稀疏保持投影算法。该算法在训练样本数据的稀疏重构的过程中,通过引入正约束和负约束监督信息指导稀疏重构,使得稀疏保持投影有效地融合了约束监督信息。在UMIST、YALE和AR人脸库人脸数据集上的实验结果表明,与无监督的稀疏保持投影相比,该方法提高了基于最近近邻分类算法的5%~15%识别准确率,有效地提高了降维分类性能。 Concerning the deficiency of supervision information in the process of sparse reconstruction in Sparsity Preserving Projection(SPP),Pairwise Constraint-guided Sparsity Preserving Projection(PCSPP) was proposed,which introduced supervision information of must-link constraints and cannot-link constraints to guide sparse reconstruction in the process of sparsity reconstruction of training samples,making SPP fuse constraint supervise information efficiently.The experimental results in UMIST,YALE and AR face datasets show,in contrast to unsupervised sparsity preserving projections,our algorithm achieves approximately 5%~15% increase in recognition accuracy based on the nearest neighbor classifier and promotes efficiently the performance of dimensionality reduction classification.
作者 齐鸣鸣
出处 《计算机应用》 CSCD 北大核心 2012年第12期3315-3318,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(71171148) 浙江省教育厅科研项目(Y201122544) 绍兴文理学院元培学院科研项目(090610)
关键词 降维 稀疏重构 成对约束 稀疏保持投影 dimensionality reduction sparse reconstruction pairwise constraint Sparsity Preserving Projection(SPP)
  • 相关文献

参考文献14

  • 1ZOU H, HASTIE T, TIBSHIRANI R. Sparse principal component analysis[ J]. Journal of Computational and Graphical Statistics, 2006, 15(6) :265 -286.
  • 2HOYER P O. Non-negative matrix factorization with sparseness con- straints[ J]. Journal of Machine Learning Research, 2004, 5 ( 11 ) : 1457 - 1469.
  • 3ZASS R, SHASHUA A. Nonnegative sparse PCA[ C]//Proceedings of Neural Information Processing Systems. Cambridge, MA: The MIT Press, 2006:1561 - 1568.
  • 4QIAO LISHAN, CHEN SONGCAN, TAN XIAOYANG. Sparsity preserving projections with applications to face recognition[ J]. Pat- tern Recognition, 2010, 43(1) : 331 - 341.
  • 5CHENG BIN, YANG JIANCHAO, YAN SHUICHENG, et al. Learning with 1( 1 )-graph for image analysis[ J]. IEEE Transactions on Image Processing, 2010, 19(4) : 858 - 866.
  • 6GUI JIE, SUN ZHENAN, JIA WEI, et al. Discfiminant sparse neighborhood preserving embedding for face recognition[ J]. Pattern Recognition, 2012, 45(2) : 2884 - 2893.
  • 7侯书东,孙权森.稀疏保持典型相关分析及在特征融合中的应用[J].自动化学报,2012,38(4):659-665. 被引量:22
  • 8黄勇.稀疏判决分析在表情识别中的应用[J].计算机工程与应用,2012,48(7):172-173. 被引量:1
  • 9许淑华,齐鸣鸣.稀疏局部Fisher判别分析[J].计算机工程与应用,2012,48(4):173-175. 被引量:4
  • 10ZHANG DAOQIANG, CHEN SONGCAN, ZHOU ZHIHUA. Con- straint Score: A new filter method for feature selection with pairwise constraints[ J]. Pattern Recognition, 2008, 41(5) : 1440 - 1451.

二级参考文献44

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:90
  • 2Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: John Wiley & Sons, 2000.
  • 3He Xiaofei, Niyogi P. Locality Preserving Projections [ EB/OL ]. [ 2003-12-01 ]. http://books, nips. cc/papers/files/nips16/ NIPS2002. AA20. pdf.
  • 4Yang Jian, Zhang Daoqiang, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26( 1 ): 131 -137.
  • 5Zhang Daoqiang, Zhou Zhihua. (2D)2PCA: 2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing, 2005, 69 ( 1/2/3 ) : 224 - 231.
  • 6Zhang Daoqiang, Chen Songcan, Liu Jun. Representing Image Matrices : Eigenimages vs. Eigenvectors//Proc of the 2nd International Symposium on Neural Networks. Chongqing, China, 2005, Ⅱ: 659 - 664.
  • 7He Xiaofei, Cai Deng, Niyogi P. Tensor Subspace Analysis [ EB/OL]. [2008-05-12 ]. http://www, cs. uiuc. edu/homes/dengcai2! Data/data. html.
  • 8He Xiaofei, Cai Deng, Liu Haifeng, et al. Image Clustering with Tensor Representation//Proc of the 13th Annual ACM International Conference on Multimedia. Hilton, Singapore, 2005:132 -140.
  • 9Cai Deng, He Xiaofai, Han Jiawei. Subspace Learning Based on Tensor Analysis. Technical Report, 2572, Urbana-Champaign, USA: University of Illinois. Department of Computer Science, 2005.
  • 10Ye Jieping, Janardan R, Li Qi. Two-Dimensional Linear Discriminant Analysis [ EB/OL]. [2004-12-13 ]. http://books, nips. cc/papers/files/nips17/NIPS2004_0205 . pdf.

共引文献28

同被引文献14

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 2Fisher R A.The use of multiple measurements in taxonomic problems[J].Annals of Eugenc,1936,7(2):179-188.
  • 3Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323-2326.
  • 4He Xiaofei,Niyogi P.Locality preserving projections[C]//Proceedings of Conference on Advances in Neural Information Processing Systems(NIPS),2003.
  • 5Yan Shuicheng,Xu Dong.Graph embedding:Ageneral framework for dimensionality reduction[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,San Diego,CA,USA,June 20-25,2005:830-837.
  • 6He Xiuling,Yang Yang,Chen Zengzhao.Manifold learning and its application in form processing[C]//Proceedings of World Congress on Intelligent and Automation,Chongqing,China,June 25-27,2008,7:332-336.
  • 7Qiao Lishan,Chen Songcan,Tan Xiaoyang.Sparsity preserving projections with applications to face recognition[J].Pattern Recognition,2010,43(1):331-341.
  • 8Donoho D L.For most large underdetermined systems of linear equations,the minimal l1norm solution is also the sparsest solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.
  • 9Chen Shaobing,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].Society for Industrial and Applied Mathematics,2006,20(1):33-61.
  • 10Wright J,Yang A,Sastry S,et al.Robustface recognition via sparse representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部