期刊文献+

Elman神经网络多传感器融合技术的研究与应用 被引量:6

Research and Application of Elman Neural Network Multi-sensor Fusion Technology
在线阅读 下载PDF
导出
摘要 由于重力传感器容易受环境温度等各种非目标参量的影响,其输出性能大大降低,为此,采用Elman神经网络多传感器融合技术加以解决。传感器信息融合是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。多传感器信息经过融合后能够完善、准确地反映环境的特征。采用Elman神经网络补偿由系统的非线性和外界干扰引起的误差。仿真试验表明,该算法计算量小、拟合程度好、精确度高。 While the output performance of the gravity sensors is greatly deteriorated because their device characteristics are easily affected by environment temperature and various non-target parameters, Elman neural network multi-sensor fusion technology is adopted to solve the problem. Sensor infomlation fusion is the technology that is able to comprehensively process and optimize variety information acquisition, representation and their intrinsic relations. With fusion, the information of multi-sensors can precisely and perfectly reflect the characteristics of environment. The errors caused by the nonlinearity of system and external interference are compensated by adopting Elman neural network. The simulation indicates that the algorithm features small amount of calculation, goodness of fitting, and high accuracy.
出处 《自动化仪表》 CAS 北大核心 2012年第11期66-68,71,共4页 Process Automation Instrumentation
关键词 传感器 数据融合 神经网络 动态补偿 鲁棒性 Sensor Data fusion Neural network Dynamic compensation Robustness
  • 相关文献

参考文献4

二级参考文献21

  • 1茆田杨,黄朝贵.基于人工神经网络的股票选择系统[J].预测,1995,14(4):51-54. 被引量:7
  • 2韩丽丽,张洛明,孟令启.中厚板轧机宽展的神经网络预测[J].中国机械工程,2006,17(18):1948-1950. 被引量:4
  • 3高美静,胡黎明.基于遗传小波神经网络的压力传感器的非线性校正研究[J].传感技术学报,2007,20(4):816-819. 被引量:8
  • 4张玉波.随钻测斜仪中传感器补偿及信号处理技术研究.大庆:大庆石油学院通信与信息系统,2007.
  • 5Manolis I A L. A brief description of the Levenberg-Marquardt algorithm implemened by levmar. Institute of Computer Science Foundation for Research and Technology-Hellas (FORTH) , 2005.
  • 6高成发.GPS测量[M].北京:人民交通出版社,1999.128-132.
  • 7Hornik K.Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2:359-366.
  • 8Hornik K.Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J].Neural Networks,1990,3:551-560.
  • 9Shi Xiaohu.Improved Elman networks and applications for controlling ultrasonic motors[J].Applied Artificial Intelligence,2004,18:603-629.
  • 10Kazuyuki Kobayashi, Fumio Munekata, Kajiro Watanabe. Accurate Navigation via Differential GPS and Vehicle Local Sensors [C]// IEEE. Multi-sensor Fusion and Integration for Intelligent System: Proceeding of the 1994 IEEE International Conference. Las Vegas, 1994:9 - 16.

共引文献18

同被引文献40

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部