期刊文献+

THE SURFACE AREA PRESERVING MEAN CURVATURE FLOW IN QUASI-FUCHSIAN MANIFOLDS

THE SURFACE AREA PRESERVING MEAN CURVATURE FLOW IN QUASI-FUCHSIAN MANIFOLDS
在线阅读 下载PDF
导出
摘要 In this paper, we consider the surface area preserving mean curvature flow in quasi-Fuchsian 3-manifolds. We show that the flow exists for all times and converges exponentially to a smooth surface of constant mean curvature with the same surface area as the initial surface. In this paper, we consider the surface area preserving mean curvature flow in quasi-Fuchsian 3-manifolds. We show that the flow exists for all times and converges exponentially to a smooth surface of constant mean curvature with the same surface area as the initial surface.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2012年第6期2191-2202,共12页 数学物理学报(B辑英文版)
基金 supported by NSFC(10971055,11171096) RFDP (20104208110002) Funds for Disciplines Leaders of Wuhan(Z201051730002) the Scientific Research Project of Jianghan University(2011017)
关键词 quasi-Fuchsian 3-manifold parabolic equation maximum principle quasi-Fuchsian 3-manifold parabolic equation maximum principle
  • 相关文献

参考文献22

  • 1Bartnik R. Existence of maximal surfaces in asymptotically fiat spacetimes. Comm Math Phys, 1984, 94(2): 155-175.
  • 2Cabezas-Rivas E, Miquel V. Volume preserving mean curvature flow in the hyperbolic space. Indiana Univ Math J, 2007, 56(5): 2061-2086.
  • 3Cabezas-Rivas E, Sinestrari C. Volume-preserving flow by powers of the ruth mean curvature. Cale Var, 2010. 38:441-469.
  • 4Canary R D, Epstein D B A, Green P L. Notes on notes of Thurston//Canary R, Marden A, Epstein D B A, eds. Fundamentals of Hyperbolic Geometry: Selected Expositions. London Math Soc Lecture Note Ser, 328. Cambridge: Cambridge Univ Press, 2006:1-115.
  • 5Chow B, Knopf D. The Ricci flow: An Introduction. Mathematical Surveys Monographs, 110. Providence, RI: American Mathematical Society, 2004.
  • 6Ecker K, Huisken G. Parabolic methods for the constraction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Comm Math Phys, 1991, 135(3): 595-613.
  • 7Ecker K. Mean curvature flow of spacelike hypersurfaces near null initial data. Comm Anal Geom, 2003, 11(2): 181-205.
  • 8Hamilton R S. Three-manifolds with positive Ricci curvature. J Diff Geom, 1982, 17(2): 255-306.
  • 9Huisken G. The volume preserving mean curvature flow. J Reine Angew Math, 1987, 382:35--48.
  • 10Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1996, 84(3): 463-480.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部