期刊文献+

基于视觉与结构谱特征融合的视频检索

Video retrieval based on visual feature and structural spectral feature
在线阅读 下载PDF
导出
摘要 视频的时序结构特征是视频的重要特征。提出了一种基于DTW和图谱理论的视频结构特征提取与表示方法,并将这种结构特征融合视觉特征用于视频的镜头检索。根据镜头分割中的帧差曲线,使用DTW原理得到视频镜头特征帧,以镜头特征帧作为图的顶点,以特征帧间的关系作为图的边,生成镜头关系图,分解图的邻接矩阵,得到镜头结构谱,融合镜头的视觉特征得到最终的检索结果。实验结果表明,视频的结构谱特征可以有效地表示视频的结构特征,在视频检索中也是有效的。 The time series structure is one of key characters of videos. In the paper, the method of abstraction and presentation video series feature is discussed which is based on DTW and graph spectral. DTW is used to extract some key frame images on the frame difference curves;the structure graph of video shot is constructed with the ver- tex set of the key frame images and edge set of the relation of these images. The video structure spectral is extracted by analyzing the the video structural graph' s adjacent matrix. Visual feature and structral featrue are taken into con- sideration to rank the simility of the selected video clips. Experimental results show that the structrual spectral is able to present the video structural feature efficiently and can be used to retrieval the vido.
出处 《计算机工程与应用》 CSCD 2012年第32期176-180,共5页 Computer Engineering and Applications
基金 安徽省教育厅自然科学重点科研计划项目(No.KJ2010A326) 安徽省高等学校优秀青年人才基金项目(No.2009SQRZ19ZD)
关键词 视频检索 动态时间规整(DTW) 关系图 结构谱 video retrieval Dynamic Time Warping(DTW) relational graph structural spectral
  • 相关文献

参考文献10

  • 1Dimitrova N,Zhang H J,Shahraray B,et al.Applications of video-content analysis and retrieval[J].MultiMedia,2002,9(3):42-45.
  • 2邓丽,金立左,费树岷.基于组合相似性的视频检索[J].电子与信息学报,2007,29(5):1023-1026. 被引量:5
  • 3彭宇新,Ngo Chong-Wah,肖建国.一种基于二分图最优匹配的镜头检索方法[J].电子学报,2004,32(7):1135-1139. 被引量:13
  • 4Tian Zhiqiang,Xue Jianru,Zheng Nanning,et al.3D spatio-temporal graph cuts for video objects segmentation[C]//2011IEEE Conference on Image Processing(ICIP),2011:11-14.
  • 5Luo B,Wilsona R C,Hancock E R.Spectral embedding of graphs[J].Pattern Recognition,2003,36(10):2213-2230.
  • 6Wilson R C,Hancock E R,Luo B.Pattern vectors from algebraic graph theory[J].IEEE Transactions on Pattern Analysis and Maching Intelligence,2005,27(7):1112-1124.
  • 7Luo B,Wilson R C,Hancock E R.A spectral approach to learning structural variations in graphs[J].Pattern Recog-nition,2006,39(6):1188-1198.
  • 8吴晓婕,胡占义,吴毅红.基于Segmental-DTW的无监督行为序列分割[J].软件学报,2008,19(9):2285-2292. 被引量:9
  • 9Su Zhong,Zhang Hongjiang,Li S,et al.Relevance feedback in content-based image retrieval:Bayesian framework,feature subspaces,and progressive learning[J].IEEE Transactions on Image Processing,2003,12(8):924-937.
  • 10Grudmann M,Kwatra V,Han M,et al.Efficient hierarchical graph-based video segmentation[C]//2010IEEE Conference on Computer Vision and Pattern Recognition(CVPR),San Francisco,2010:2141-2148.

二级参考文献18

  • 1李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 2Ngo C W,Pong T C,Chin R T.Video partitioning by temporal slice coherency[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(8):941-953.
  • 3Liu X M,Zhuang Y T,Pan Y H.A new approach to retrieve video by example video clip[A].Proceedings of ACM Multimedia[C].Orlando:ACM,1999.41-44.
  • 4Wu Y,Zhuang Y T,Pan Y H.Content-based video similarity model[EB/OL].http://www.acm.org/sigs/sigmm/MM2000/ep/wu/wu.pdf.
  • 5Zhao L,Qi W,Li S Z,et al.Key-Frame extraction and shot retrieval using nearest feature line (NFL)[A].Proceedings of the International Workshop on Multimedia Information Retrieval,in Conjunction with ACM Multimedia Conference 2000[C].Los Angeles:ACM Multim
  • 6Ngo C W,Pong T C,Zhang H J.Motion-based video representation for scene change detection[J].Internal Journal of Computer Vision,2002,50(2):127-143.
  • 7Chen L P,Chua T S.A match and tiling approach to content-based video retrieval[A].Proceedings of IEEE International Conference on Multimedia and Expo[C].Tokyo:IEEE,2001.417-420.
  • 8Jain A K,Vailaya A,and Wei X.Query by video clip.Multimedia System,1999,7(5):369-384.
  • 9Shan M K and Lee S Y.Content-based video retrieval based on similarity of frame sequence.In Proceedings of the IEEE Conference on Multimedia Computing and Systems,Austin,Texas,5-7 Aug,1998:90-97.
  • 10Zhou S K and Chellappa R.From sample similarity to ensemble similarity:Probabilistic distance measure in reproducing kernel Hilbert space.IEEE Trans.on Pattern Analysis and Machine Intelligence,2006,28(6):917-929.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部