期刊文献+

KNN分类算法改进研究进展 被引量:30

A Literature Review on the Improvement of KNN Algorithm
原文传递
导出
摘要 指出传统KNN(k-nearest neighbor)算法的两大不足:一是计算开销大,分类效率低;二是在进行相似性度量和类别判断时,等同对待各特征项以及近邻样本,影响分类准确程度。针对第一点不足,提出三种改进策略,分别为:基于特征降维的改进、基于训练集的改进和基于近邻搜索方法的改进;针对第二点不足,提出两种改进策略,分别为:基于特征加权的改进和基于类别判断策略的改进。对每种改进策略中的代表方法进行介绍并加以评述。 The paper points out that the traditional k-nearest neighbor(KNN) algorithm has two shortcomings, one is its high compu- tational complexity, and another is that it gives equal importance to each feature items and neighbor samples during the process of simi- larity measure and category judgment. According to the first shortcoming, three kinds of improvement strategy are put forward, which are feature reduction, optimization of training set and improvement of neighbor searching method. According to the second shortcoming, two kinds of improvement strategy are put forward, which are feature weighting and sample weighting. Representative method of each strategy is also introduced and commented objectively.
出处 《图书情报工作》 CSSCI 北大核心 2012年第21期97-100,118,共5页 Library and Information Service
基金 国家社会科学基金项目"自动文本分类技术研究"(项目编号:08CTQ003)研究成果之一
关键词 KNN分类 特征降维 特征加权 训练集优化 快速算法 KNN categorization ,dimension reduction, feature weighting, training set optimizing, fast KNN
  • 相关文献

参考文献36

二级参考文献228

共引文献724

同被引文献249

引证文献30

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部