期刊文献+

扶手椅型石墨烯纳米带场效应管的开关电流及复能带结构

The On-off Current and the Complex Band Structure of Armchair Graphene Nanoribbon Field-effect Transistors
在线阅读 下载PDF
导出
摘要 基于对复能带结构的考虑,给出了扶手椅型石墨烯纳米带场效应管的量子输运计算结果,并比较了ID-VG曲线所给出的最小泄漏电流值与ID-VD曲线所给出的开电流值。对于纳米尺度下的石墨烯纳米带场效应管,为了获得最佳性能,指出在关状态下的泄漏电流与开电流之间存在某种折衷,也就是说,ID-VG曲线给出的较小/大的关状态泄漏电流可能伴随着ID-VD曲线的一个较小/大的开电流。随后利用复能带的特性对此作了解释。 This paper shows the ballistic quantum transport calculation results for the armchair graphene nanoribbon field effect transistors based on full complex band structure.Then the minimum leakage current in the ID-VG curve and the on current in the ID-VD curve are compared.It is demonstrated that in order to have the best performance of the nanoscale graphene nanoribbon field effect transistors,tradeoffs are found for the off state leakage current and the on state current,i.e.,a smaller/larger off state leakage current in IDVG curve may be accompanied with a smaller/larger on current in ID-VD curve,which is then explained by full complex band structure characteristics.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2012年第5期424-427,共4页 Research & Progress of SSE
基金 中央高校基本科研业务费专项资金资助项目(YWF-10-02-040) 北京市自然科学基金资助项目(4122045)
关键词 复能带结构 量子输运 石墨烯纳米带场效应管 开关电流 complex band structure quantum transport graphene nanoribbon fieldeffect transistor on-off current
  • 相关文献

参考文献17

  • 1Novoselov Konstantin, Geim Andre, Morozov Sergey, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-609.
  • 2Berger Clair, Song Zhimin, Li Xuebin, et al. Elec- tronic confinement and coherence in patterned epitaxi- al graphene[J]. Science, 2006, 312(5777): 1191- 1196.
  • 3Obradovic B, Kotlyar R, Heinz F, et al. Analysis of graphene nanorihbons as a channel material for field- effect transistors[J]. Applied Physics Letter, 2006, 88(14) : 142102-142104.
  • 4Han M, Ozyilmaz B, Zhang Y, et al. Energy band gap engineering of graphene nanoribbons[J].PhysicaI Review Letter, 2007, 98(20): 206805-206808.
  • 5Liang Gengchiau, Neophytou Neophytos, Nikonov D, et al. Performance projections for ballistic graphene nanoribbon field-effect transistors[J]. IEEE Transac- tions on Electron Devices, 2007, 54(4) : 677-682.
  • 6Ouyang Y, Guo Jing. A theoretical study on thermo- electric properties of graphene [J]. Applied Physics Letter, 2009, 94(26):263107-263109.
  • 7Guan Ximen, Zhang Ming, Liu Qiang, et al. Simula- tion investigation of double-gate CNR-MOSFETs with a fully self-consistent NEGF and TB method [C]. IEDM, 2007: 761-764.
  • 8Odili I, Wu Y, Childs A, et al. Modeling charge transport in graphene nanoribbons and carbon nan- otubes using a Schr6dinger-Poisson solver[J]. Journal of Applied Physics, 2009, 106(2): 024509-024513.
  • 9Zhao Pei, Guo Jing. Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods [J]. Journal of Applied Physics, 2009, 105(3): 034503-034509.
  • 10Grassi R, Poli S, Gnani E, et al. Tight-binding and effective mass modeling of armchair graphene nanorib- bon FETs[J].Solid State Electronics, 2009, 53(4): 462-467.

二级参考文献31

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666.
  • 2Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201.
  • 3Durkop T, Getty S A, Cobas E and Fuhrer M S 2004 Nano Lett. 4 .:25.
  • 4Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954.
  • 5Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748.
  • 6Zhou B H, Duan Z G, Zhou B L and Zhou G H 2010 Chin. Phys. B 19 037204.
  • 7Miyamoto Y, Nakada K and Fujita M 1999 Phys. Rev. B 59 9858.
  • 8Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803.
  • 9White C T, Li J, Gunlycke D and Mintmire J W 2007 Nano Lett. 7 825.
  • 10Reich S, Maultzsch J, Thomsen C and Ordejon P 2002 Phys. Rev. B 66 035412.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部