期刊文献+

一种用小波包变换提取眼电信号警觉度特征的方法 被引量:6

A New Method of Extracting Vigilant Feature from Electrooculography Using Wavelet Packet Transform
暂未订购
导出
摘要 警觉度是指人集中注意力执行某项任务时所表现出的灵敏程度。为保证生产安全,很多岗位需要对工作人员的警觉度进行估计和预测,如高铁司机和危险品运输司机等。基于脑电和眼电等生理信号的警觉度估计与预测是警觉度研究的一个重要方向,如何提取眼电信号中的警觉度特征是该研究的核心问题之一。本研究应用小波包变换方法从水平眼电中提取不同频段能量的比值,以期找出高相关度的警觉度特征。探讨了水平眼电中16种不同的低高频分段的能量比特征,对特征分别进行了移动平均和线性动力系统去噪处理。实验表明,分段为(0~1.50 Hz)/(1.50~31.25 Hz)的能量比值与警觉度的相关系数最高。35组实验的相关系数平均值为0.742,标准差为0.151,比已有的慢速眼动、快速眼动以及眨眼等11种特征中最好特征的相关系数平均值提高了5.55%,标准差降低了6.62%。 Vigilance refers to the sensitivity when a person concentrates on executing an assignment. To ensure safety, vigilant estimation and prediction is necessary for many kinds of posts, such as high-speed railway drivers and dangerous goods transport drivers. The vigilant estimation and prediction based on physiological signals such as EEG and EOG is an important subject in vigilant research. How to get the be.st vigilant feature is one of the kernel problems. In this article, the wavelet packet transform was applied for extracting energy ratio in frequency domain from horizontal EOG in order to get the features closely related with vigilance. We discussed energy ratio features in 16 different segmentations and adopted moving average and linear dynamic system to denoise the acquired features. Experimental results show that the demarcation at (0 - 1.50 Hz)/ (1.50 -31.25 Hz) is the best condition. From 35 data sets, the average correlation coefficient is 0. 742 and the standard deviation is 0. 151, which is better than the existing 11 features such as slow eye movement, rapid eye movement and blink. The average correlation coefficient increases 5.55% and the standard deviation decreases 6. 62% than the best feature in the literature.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第5期641-648,共8页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金项目(90820018) 国家重点基础研究发展(973)计划(2009CB320901)
关键词 眼电信号 警觉度 警觉度特征 小波包变换 相关分析 Electrooculography vigilance vigilant feature wavelet packet transform correlation analysis
  • 相关文献

参考文献13

  • 1Ji Qiang, Yang Xiaojie. Real-time eye, gaze, and face pose tracking for monitoring driver vigilance [ J ]. Real-Time Imaging, 2002, 8(5):357-377.
  • 2Grace R, Byme VE, Legrand JM, et al. A machine vision based drowsy driver detection system for heavy vehicles [ C ] // Proceedings of Conference on Ocular Measures of Driver Alertness. Washington DC : FHWA,1999:75 - 86.
  • 3Makeig S, Jung TP. Changes in alertness are a principal component of variance in the EEG spectrum [ J ]. Neuroreport, 1995,7(1) :213 -216.
  • 4Kenneth P, Wright Jr, Joseph HT, et al. Relationship between alertness, performance, and body temperature in humans [ J ]. American Journal of Physiology, 2002, 283(6) : 1370 -1377.
  • 5傅佳伟,石立臣,吕宝粮.基于EEG的警觉度分析与估计研究综述[J].中国生物医学工程学报,2009,28(4):589-596. 被引量:16
  • 6Wright N, MeGown A. Involuntary sleep during civil air operations: wrist activity and the prevention of sleep [ J ]. Aviation, Space, and Environmental Medicine, 2004,75 ( 1 ) : 37 - 45.
  • 7Hanke S, Zeitlhofer J, Wiest G, et al. Automated vigilance classification based on EOG signals: preliminary results [ C ] // Proceedings of World Congress on Medical Physics and Biomedical Engineering. Munich : IFMBE, 2009 : 428 - 431.
  • 8Magosso E, Provini F, Montagna P. A wavelet based method for automatic detection of slow eye movements : A pilot study [ J ] Medical Engineering & Physics, 2006, 28 (9) : 860 - 875.
  • 9Khushaba RN, Kodagoda S, Lal S, et. al. Driverdrowsiness classification using fuzzy wavelet - packet-based feature- extraction algorithm [ J ]. IEEE Transaction on Biomedical Engineering, 2011, 55(1) :121 - 131.
  • 10Cai Haoyu, Ma Jiaxin, Shi Lichen, et al. A novel method for EOG features extraction from the forehead( C ] //Proceedings of 33rd annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: IEEE, 2011 : 3075 - 3078.

二级参考文献49

  • 1Carskadon MA, Dement WC, Mitler MM, et al. Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness [J]. Sleep, 1956, 9(4) : 519- 524.
  • 2Cole R J, Kripke DF, Gruen W, et al. Automatic sleep/wake identification from wrist activity [J]. Sleep, 1992, 15(5) : 461 - 469.
  • 3Dement W, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming [J]. Electroencephalography and Clinical Neurophysiology, 1957, 9(4) : 673 - 690.
  • 4Makeig S, Inlow M. Lapses in alertness: coherence of fluctuations in performance and EEG spectrum [J]. Electroencephalography and Clinical Neurophysiology, 1993, 86( 1 ) : 23 - 35.
  • 5Declerck AC, Beecher L, Arends J. How to measure vigilance [J]. Electroencephalography and Clinical Neurophysiology, 1995, 95 (3) : 84.
  • 6Aserinsky E, Kleitman N. Two types of ocular motility occurring in sleep [J]. Journal of Applied Physiology, 1955, 8(1) : 1 - 10.
  • 7Kenneth P, Wright Jr, Joseph HT, et al. Relationship between alertness, performance, and body temperature in humans [ J ]. American Journal of Physiology, 2002, 283(6) : 1370 - 1377.
  • 8Cajochen C, Khalsa SBS, Wyatt JK, et al. EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss [J]. American Journal of Physiology, 1999, 277(3) : 640 - 649.
  • 9Ji Qiang, Yang Xiacjie. Real-time eye, gaze, and face pose tracking for monitoring driver vigilance [ J]. Real-Time Imaging, 2002, 8(5) : 357 - 377.
  • 10Kubicki S, Herrmann W, Fichte K, et al. Reflections on the topics: EEG frequency bands and reg'ulation of vigilance [ J ]. Pharmakopsychiatr Neuropsychopharmakol, 1979, 12 (2) : 237 - 245.

共引文献15

同被引文献42

  • 1魏琳,沈模卫,张光强,施壮华.EEG波形伪迹去除方法[J].应用心理学,2004,10(3):47-52. 被引量:9
  • 2沈钦荣.中医药治疗膝骨性关节炎实验研究进展[J].中国中医药科技,2004,11(6):389-390. 被引量:7
  • 3张海燕,周全,夏金东.超声缺陷回波信号的小波包降噪及特征提取[J].仪器仪表学报,2006,27(1):94-97. 被引量:34
  • 4梁平,李胜利.膝骨性关节炎的临床治疗进展[J].中国中医骨伤科杂志,2006,14(3):65-67. 被引量:15
  • 5杨英,盛敬,杨佳,周巍.基于神经网络的驾驶员觉醒水平双目标监测法[J].东北大学学报(自然科学版),2007,28(3):418-421. 被引量:9
  • 6Shull P, Lurie K, Shin M, et al. Haptic gait retraining for knee osteoarthritis treatment [C]// Proceedings of the IEEE Haptics Symposium 2010. Waltham: IEEE,2010 : 409 - 416.
  • 7Wrigley TV, Simic M, Hunt MA, et al. Real-time movement biofeedback for walking gait modification in knee osteoarthritis [ C ]// Proceedings of the Virtual Rehabilitation International Conference 2009. Haifa : IEEE,2009:132- 135.
  • 8李声飞.基于WSN的穿戴式人体姿态与健康监护系统的研制[D].重庆:重庆大学,2010.
  • 9Taylor PE, Almeida JM, Kanade T, et al. Classifying human motion quality for knee osteoarthritis using accelerometers [ C ]// Proceedings of the 32nd Annual International Conference of the IEEE EMBS Buenos Aires. Argentina: IEEE,2010:339 - 343.
  • 10Taylor PE, Almeida DA, Hodgins JK, et al. Muhi-label classification for the analysis of human motion quality [ C ]// Proceedings of the 34th Annual International Conference of the IEEE EMBS. San Diego:IEEE,2012:2214-2218.

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部