期刊文献+

面向辅助驾驶的夜间行人检测方法 被引量:5

Nighttime Pedestrian Detection Method for Driver Assistance Systems
在线阅读 下载PDF
导出
摘要 辅助驾驶系统需要实时而准确的行人检测方法.文中利用基于知识的方法复杂度小的优点,针对单目远红外视频数据,提出一种基于概率模板匹配的夜间行人检测方法.该方法基于行人样本的灰度分布特征,采用局部双阈值分割算法提取候选目标,进而根据行人的运动方向建立多尺度概率模板,对候选目标进行判别.该概率模板建立方式缓解了行人样本类内方差较大的问题,增强了概率模板归纳行人外观模式的能力.为改善行人检测的准确度,进一步将目标跟踪算法融入概率模板匹配,借助多帧的综合处理结果实现了更为鲁棒的目标归属判断.实验结果表明:该方法计算开销较低,实时性较好;在郊外场景中检测率不低于90%,虚警率不高于10%;而在市区场景中检测率约为75%,虚警率约为22%. In driver assistance systems, real-time and accurate pedestrian detection is required. In this paper, by taking advantage of the low complexity of a knowledge-based detection method, a nighttime pedestrian detection method for monocular far-infrared video data is proposed based on the probabilistic template matching. In this me- thod, according to the distribution of intensity in pedestrian samples, a local dual threshold segmentation algorithm is adopted to extract the candidate regions that may contain pedestrians. Then, multi-scale probabilistic templates are established based on the moving directions of pedestrian samples and are employed to recognize the potential pe- destrians from the candidate regions. The establishment mode of probabilistic templates alleviates the large within- class variability of pedestrian samples, thus improving the induction abilities of the probabilistic templates for the appearance of pedestrians. In order to further improve the detection accuracy, the probabilistic template matching is integrated with the object-tracking algorithm, which results in more robust final decision through the multi-frame validation. Experimental results show that the proposed method can realize a real-time pedestrian detection with a low computation cost; and that it achieves a detection rate of more than 90% at the false alarm rate of less than 10% on suburban scenes while a detection rate of about 75% at the false alarm rate of about 22% on urban scenes.
作者 庄家俊 刘琼
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期56-62,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61171141)
关键词 辅助驾驶系统 行人检测 概率模板 目标跟踪 远红外视频 driver assistance systems pedestrian detection probabilistic template object tracking far-infraredvideo
  • 相关文献

参考文献14

  • 1Soga M, Hiratsuka S, Fukamachi H, et al. Pedestrian de- tection for a near infrared imaging system [ C ]//Procee- dings of IEEE Conference on Interhgent Transportation Systems. Beijing : IEEE, 2008 : 1167-1172.
  • 2Ger6nimo D, L6pez A M, Sappa A D, et al. Survey of pe- destrian detection for advanced driver assistance systems [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2010,32(7 ) : 1239-1258.
  • 3Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ C ] //Proceedings of IEEEComputer Society Conference on Computer Vision and Pattern Recognition. Kauai : IEEE ,2001:511-518.
  • 4Viola P, Jones M, Snow D, Detecting pedestrians using patterns of motion and appearance [ C ]//Proceedings of IEEE International Conference on Computer Vision. Nice: IEEE,2003:734-741.
  • 5O' Malley R, Jones E, Glavin M. Detection of pedestrians in far-infrared automotive night vision using region-gro- wing and clothing distortion compensation [ J]. Infrared Physics & Technology ,2010,53 (6) :439-449.
  • 6Ge J F, Luo Y P, Tei G. Real-time pedestrian detection and tracking at nighttime for driver-assistance systems [J]. IEEE Transactions on Intelligent Transportation Sys- tems ,2009,10 (2) :283-298.
  • 7梁英宏.红外视频图像中的人体目标检测方法[J].红外与激光工程,2009,38(5):931-935. 被引量:13
  • 8Bertozzi M, Broggi A, Gomez C H, et al. Pedestrian detec- tion in far infrared images based on the use of probabilis- tic templates [ C ] //Proceedings of 1EEE Intelligent Vehi- cles Symposium. Istanbul : IEEE,2007 : 327- 332.
  • 9Sun H,Wang C, Wang B L, et al. Pyramid binary pattern features for real-time pedestrian detection from infrared videos[J].Neurocomputing, 2011,74 ( 5 ) :797- 804.
  • 10郭烈,高龙,赵宗艳.基于车载视觉的行人检测与跟踪方法[J].西南交通大学学报,2012,47(1):19-25. 被引量:8

二级参考文献30

  • 1Turk M A,Pentland A P.Face recognition using eigenfaces[C]∥Proceedings of IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition.Maui:IEEE,1991:586-591.
  • 2Ross D,Lim Jongwoo,Lin R,et al.Incremental learningfor robust visual tracking[J].International Journal ofComputer Vision,2008,77(1):125-141.
  • 3Dong Y,De Souza G N.Adaptive learning of multi-sub-space for foreground detection under illumination chan-ges[J].Computer Vision and Image Understanding,2011,115(1):31-49.
  • 4Kass M,Witkin A,Terzopoulos D.Snakes:active contourmodels[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 5Zhang Tao,Freedman D.Tracking objects using densitymatching and shape priors[C]∥Proceedings of theNinth IEEE International Conference on Computer Vi-sion.Nice:IEEE,2003:1056-1062.
  • 6Nejhum S M Shaled,Ho Jeffrey,Yang Ming-Hsuan.On-line visual tracking with histogram and articulatingblocks[J].Computer Vision and Image Understanding,2010,114(8):901-914.
  • 7Freedman D,Zhang T.Interactive graph cut based seg-mentation with shape priors[C]∥Proceedings of IEEEComputer Society Conference on Computer Vision andPattern Recognition.San Diego:IEEE,2005:755-762.
  • 8Simon Dan.Optimal state estimation:Kalman,H-infinity,and nonlinear approaches[M].Canada:John Wiley andSons,2006:466-469.
  • 9Yilmaz A,Javed O,Shah M.Object tracking:a survey[J].ACM Computer Surveys,2006,38(4):229-240.
  • 10Puri A,Valavanis K P,Kontitsis M.Statistical profile ge-neration for traffic monitoring using real-time UAV basedvideo data[C]∥Proceedings of Mediterranean Confe-rence on Control and Automation.Athens:IEEE,2007:1-6.

共引文献21

同被引文献27

  • 1郭烈,王荣本,金立生,余天洪.基于边缘对称性的车辆前方行人检测方法研究[J].交通与计算机,2007,25(1):40-43. 被引量:4
  • 2Dollar P, Wojek C, Schiele B, et aI.Pedestrian detection : an evaluation of the state of the an [J].IEEE Transactions on Pattern Antdysis and Machine Intelligence,2012,34 (4) :743-761.
  • 3Sun H,Wang C,Wang B,et al.Pyramid binary pattern Leatures lbr real-time pedestrian detection from infrared videos [ J ] .Neurocomputing, 2011,74 ( 5 ) : 797-804.
  • 4Yah J, Zhang X, Lei Z, et al.Robust multi-resolution pede- strian detection in traffic scenes [C]//Proceedings of the IEEE Computer Society Conlbrence on Computer Vision and Pattern Recognition.Portland: IEEE, 2013 : 3033-3040.
  • 5Ge J,Luo Y,Tei G.Real-timc pedestrian detection and tracking at nighttime for driver-assistance systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2009.10(2):283-298.
  • 6Bertozzi M, Broggi A, Felisa M,et aLLow-level pedestrian detection by means of visible and far infra-red tetra-vision [C]//Proceedings of Intelligent Vehicles Symposium. Tokyo : IEEE, 2006 : 231-236.
  • 7Liu Q ,Zhuang J J, Ma J.Robt, st and fast pedestrian detec- tion method for far-infiared automotive driving assistance systems [ J ].Infrared Physics and Technology, 2013,60 : 288-299.
  • 8Zin T T,Tin P, Hama H.Bundling multislit-HOG features of near infrared images tbr pedestrian detection [C]// Proceedings of the 4th International Conference on Inno- vative Computing,Information and Control.Kaohsiung: IEEE, 2009 : 302-305.
  • 9Dalai N,Triggs B.Histograms of oriented gradients for human detection [C]//Proceedings of 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition.San Diego : IEEE, 2005 : 886-893.
  • 10Olmeda D,de la Escalera A,Amlingol J M.Detection and tracking of pedestrians in infrared images [C]// Proceedings of the 3rd International Conference on Signals,Circuits and Systems.Medenine:lEEE,2009 : I-6.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部