期刊文献+

热态重轨图像光照不均校正方法 被引量:1

Correction Method of Poor Illumination for Hot Heavy Rail
在线阅读 下载PDF
导出
摘要 为抑制重轨弧面强反射场引起的局部亮度过大,同时保留足够多的原始图像信息.研究了线像素灰度处理方法,计算列像素均值,去均值化处理实现纵向光照不均校正;选取上边缘的n个离散点,三次B样条边缘拟合,y方向像素对齐实现边缘矫直,然后对每一行的像素进行叠加,将灰度均值作为基准,根据每一行像素灰度和基准的比值进行线性拉伸,实现横向光照不均校正.引入信息熵、均方误差、峰值信噪比、通用图像质量指数量化比较不同方法的处理效果.对比实验表明,文中方法得到的图像总体灰度值分布最均匀,图像质量评价参数最高.该方法校正了图像亮度的不均匀性,同时能保留足够多的原始图像信息. To restrain the phenomenon of local excessive brightness caused by the strong reflection from arc of the heavy rail, and retain enough of the original image information, lines-pixel of gray pro- cessing was investigated amply, the average of column-pixel was calculated and subtracted for vertical poor illumination correction, n discrete points were used for cubic B-Spline edge fitting, y directional pixel was alignment to realize the edge straighten out, and then, every raw-pixel was added, with the gray average as benchmark, according to the ratio of every raw-pixel and benchmark to linear stretch, to realize the transverse poor illumination correction, lines-pixel of gray processing was contrasted with the other ways of image processing effects with gray entropy, mean square error(MSE), peak signal-to-noise ratio(PSNR), universal image quality index(UIQI). The experiment indicates that the distribution of image gray value most uniform and image quality evaluation parameters maximum with the lines-pixel of gray processing algorithm. This method amends the image luminance heterogeneity, preserves sufficient original image information.
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第5期950-953,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金委员会与中国工程物理研究院联合基金项目资助(批准号:10976034)
关键词 图像处理 热态重轨 光照不均 同态滤波 背景均衡化 线像素灰度处理 image processing hot heavy rail poor illumination homomorphic filtering background equalization lines-pixel of gray processing
  • 相关文献

参考文献3

二级参考文献33

  • 1Kotoulas L, Andreadis I. Color histogram content-based image retrieval and hardware Implementation [J]. IEEE Proceeding, Circuits Devices and System, 2003,150(5) :387-393.
  • 2FRANZ P, PAUL O L. Image acquisition techniques for automatic visual inspection of metallic surfaces [J]. NDT&E International, 2003, 36 (8) :609-617.
  • 3YANG C C. Improving the sharpness of an image with non-uniform illumination [J]. Optics & Laser Technology, 2005,37(3):235-238.
  • 4CAO W P, CHE R S, YE D. An illumination-independent edge detection and fuzzy enhancement algorithm based on wavelet transform for non uniformweak illumination images [J]. Pattern Recognition Letters, 2008,29(3) :192-199.
  • 5UCHE N, PETER L. Homomorphic filtering of colour images using a spatial filter kernel in the HSI colour space [C]. IEEE International Instrumentation and Measurement Technology Conference, Institute of Electrical and Electronics Engineers Inc. , Piscataway, 2008:1738-1743.
  • 6DAVID T, RACHID D. Vector-Valued image regularization with PDEs: A common framework for different applications[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(4) :506-517.
  • 7YI D K, LEE S Y. Fourth-order partial differential equations for image enhancement [J]. Applied Mathematics and Computation, 2006, 175: 430- 440.
  • 8ZHU L X, XIA D S. Staircase effect alleviation by coupling gradient fidelity term [J].Image and Vision Computing, 2008,26 (8) : 1163-1170.
  • 9Kumar A. Computer-Vision-Based Fabric Defect Detection: A Survey [ J]. IEEE Trans on Industrial Electronics, 2008, 55(1): 348 -363.
  • 10Kumar A, Pang G K H. Defect Detection in Textured Materials Using Gabor Filters [ J]. IEEE Trans on Industry Applications. 2002, 38(2): 425-440.

共引文献21

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部