期刊文献+

基于视频分析的实时跟踪及入侵警报系统

Real-time tracking and intrusion alarm system based on video analysis
在线阅读 下载PDF
导出
摘要 提出了一种基于视频分析的实时跟踪及入侵警报算法并构建了基于此算法的实时系统.运用Otsu算法对视频图像进行预处理.通过对预处理后的视频图像进行详细分析,根据运动行人的二值图像特征,用阈值分割及连通域的融合等方法实现对非目标人体干扰的去除,同时,对运动行人区域进行有效提取及跟踪.当实时跟踪的行人越过事先确定的警报区域,则系统发出警报.所提方法运算复杂度小,鲁棒性高,运算速度快,构建的实际系统可有效实现行人跟踪及入侵警报,实验证明该系统精度满足实际需求,具有较好的实时性,可应于较多领域. Abstract: This paper presents a realtime tracking and intrusion alarm algorithm based on video anal ysis, and a realtime system is built based on the algorithm. Video images are preprocessed by the Otsu algorithm. The proposed method makes a detailed analysis of the video image after pretreat ment. The threshold segmentation and the connected domain fusion method are used to remove non target human interference according to the characteristics of the moving pedestrians in the binary im age. Meantime, the area of the moving pedestrians are effectively extracted and tracked. The system alerts when the realtime tracking pedestrian overgoes the predetermined alarm zone. The proposed method is of low computational complexity, high robustness and high computing speed. The con structed actual system can effectively achieve the pedestrian tracking and intrusion alarm. Experimen tal results show that the system meets the requirements of precision and has a better realtime per formance, and it can be used in more areas.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第A01期51-54,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51175081 61107001) 江苏省自然科学基金资助项目(BK2010058)
关键词 智能视觉跟踪 入侵警报 行人跟踪 intelligent visual surveillance intrusion alarm pedestrian tracking
  • 相关文献

参考文献10

  • 1朱然,马培军,苏小红.基于粒子滤波的行人跟踪研究及其性能分析[J].智能计算机与应用,2011,1(2X):14-19. 被引量:2
  • 2Curio C, Edelbrunner J, Kalinker T, et al. Walking pe- destrian recognition [ J ]. IEEE Transactions on Intelli- gent Transportation Systems, 2000, 1 (3) : 155 - 163.
  • 3Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors [ J ]. International Journal of Computer Vision, 2007, 75 (2) :247 - 266.
  • 4Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning [ C ]//IEEE Com- puter Society Conference on Computer Vision and Pat- tern Recognition Workshops. Miami, FL, USA, 2009 : 983 - 990.
  • 5Kalal Z, Matas J, Mikolajczyk K. P-N learning: boot- strapping binary classifiers by structural constraints [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 2010 : 49 - 56.
  • 6Kalal Z, Matas J, Mikolajczyk K. Online learning of robust object detectors during unstable tracking [ C ]// IEEE 12th International Conference on Computer Vision Workshops. Kyoto, Japan, 2009: 1417- 1424.
  • 7Kalal Z, Matas J, Mikolajczyk K. Face-TLD: tracking- learning-detection applied to faces [ C ]//International Conference on Image Processing. Hong Kong, China, 2010: 3789 - 3792.
  • 8Huber D, Kapuria A, Donamukkala R, et al. Parts based 3D object classification [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2004:82 - 89.
  • 9Osada R, Funkhouser T, Chazelle B, et al. Matching 3 D models with shape distributions [ C ]//Shape Model- ing Int. Genova, Italy, 2001:154 - 166.
  • 10Otsu N. A threshold selection gray-level histogram [J]. IEEE Transactions on Systems, Man and Cyber- netics, 1979, 9(1) :62-66.

二级参考文献8

  • 1王玉茹.基于粒子滤波器的视频目标跟踪关键技术及其应用研究[D]哈尔滨工业大学,哈尔滨工业大学2010.
  • 2WANG Fasheng,LIN Yuejin.Improving particle filter with anew sampling strategy. International Conference on ComputerScience&Education . 2009
  • 3DONG Huiying,CAO Bin,YANG Yueping.Application of par-ticle filter for target tracking in wireless sensor networks. International Conference on Communications and Mobile Com-puting . 2010
  • 4HAN Hua,DING Yongsheng,HAO Kuangrong.A new immuneparticle filter algorithm for tracking a moving target. Intern-ational Conference on Natural Computation . 2010
  • 5RYU H R,HUBER M.A particle filter approach for multi-t-arget tracking. Proceedings of the 2007 IEEE/RSJ Internat-ional Conference on Intelligent Robots and System . 2007
  • 6高建坡,韦志辉,孟迎军,吴镇扬.基于均值移动确定性漂移的改进CONDENSATION人脸跟踪[J].光电工程,2009,36(2):137-142. 被引量:2
  • 7刘晓冬,苏光大,周全,田超.一种可视化智能户外监控系统[J].中国图象图形学报(A辑),2000,5(12):1024-1029. 被引量:33
  • 8周小四,杨杰,朱一坦.用于监控智能报警系统的图像识别技术[J].上海交通大学学报,2002,36(4):498-498. 被引量:22

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部