期刊文献+

基于诱导法曲率的非对称弧齿锥齿轮多目标优化 被引量:1

ASYMMETRIC SPIRAL BEVEL BEARS' MULTI-OBJECTIVE OPTIMIZATION BASED ON THE INDUCED NORMAL CURVATURE
在线阅读 下载PDF
导出
摘要 为提高非对称弧齿锥齿轮的设计效率及质量,依据微分几何、弹性流体动力润滑理论、弧齿锥齿轮设计理论与方法及可靠性设计理论,建立以齿间最小油膜厚度、可靠性及大小齿轮等强度原则为约束,以齿面诱导法曲率主值最小和锥齿轮传动总体积最小为目标函数的约束多目标优化设计数学模型;借助于粒子群多目标优化算法,利用Matlab编制优化程序,通过范例进行优化设计。根据齿轮啮合原理和现代磨擦学原理分析诱导法曲率主值对齿面接触强度和抗胶合承载能力的影响。研究结果表明,利用粒子群多目标优化算法和得到的设计参数,能有效地提高弧齿锥齿轮传动系统的承载能力,保证传动系统的可靠度,明显降低重量和体积,获得性价比较佳的弧齿锥齿轮传动产品。 In order to improve the asymmetrical spiral bevel gears' design efficiency and quality, a multi-objective optimization's mathematical model is established with the PSO (particle swarm optimization) algorithm. The model is based on differential geometry, elastic hydrodynamic lubrication theory, spiral bevel gear design theory and the reliability design theory. The minimum film thickness between teeth, reliability, strength and size of gears is the model's constraints and the minimize main value of the induced normal curvature and the minimize of the total volume of the drive bevel gear is the model's objective function. The algorithm is written by Matlab and though the example to do the optimization. The model analyzes the induced normal eurvature's the main value's affect to the tooth surface contact strength and bevel gear transmission system's load capacity. The result shows that by the use of the PSO algorithm and the design's paramelers obtained, the bevel gear transmission system's load capacity can be improved, the transmission system's reliability can be insured, the volume and weight are reduced obviously and a betler spiral bevel gear transmission product is get.
作者 钱学毅 吴双
出处 《机械强度》 CAS CSCD 北大核心 2012年第5期786-790,共5页 Journal of Mechanical Strength
关键词 诱导法曲率 弹性流体动力润滑 可靠性 约束多目标优化 粒子群优化算法 Induced normal curvature Elastic hydrodynamic lubrication Reliability Constrained multi-objectiveoptimization Particle swarm optimization
  • 相关文献

参考文献11

  • 1Litvin F L, Fuentes A, Howkins M. Designing, generation and TCA of new type of asymmetric face-gear drive with modified geometry [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(43-44): 5837-5865.
  • 2Difrancesco G, Marini S. Structural analysis of asymmetrical teeth: reduction of size and weight [ J ]. Gear Technology, 1997, 14 ( 5 ) : 121-125.
  • 3张金良,方宗德,邓效忠,吴斌.准双面齿轮强度的非对称设计[J].机械科学与技术,2005,24(5):568-569. 被引量:4
  • 4Kennedy J, Eberhart R. Particle swarm optimization [C]//IEEE International Conference on Neural Networks: Perth, Australia. Piscataway, NJ: IEEE Service Center, 1995: 1942-1945.
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [ C ]// Roc. Sixth International Symposium on Micro Machine and Human Science: Nagoya, Japan. Piscataway, NJ: IEEE Service Center. 1995, 39-43.
  • 6张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:234
  • 7钱学毅,吴祯芸.双圆弧齿轮传动多目标稳健优化设计[J].机械传动,2010,34(11):45-48. 被引量:4
  • 8温诗铸 杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992..
  • 9全永听.工程磨擦学[M].杭州:浙江大学出版社,1994:351-353.
  • 10秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31. 被引量:109

二级参考文献37

  • 1钱学毅.高速重载双圆弧齿轮传动优化设计[J].机械设计与制造,2005(4):6-7. 被引量:3
  • 2Coelo Coelo C A,Salazar Lechuga M.A proposal for multiple objective particle swarm optimization[C].2002 IEEE Congress Evolutionary Computation,New Jersey:IEEE Press,2002:1051-1056.
  • 3Parsopoulos K E,Vrahatis M N.Particle swarm optimization method in multiobjective problems[C].2002 ACM Symposium on Applied Computing,Madrid,2002:603-607.
  • 4X Hu,R C Eberhart.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C].2002 IEEE Congress on Evolutionary Computation,New Jersey:IEEE Press,2002:1677-1681.
  • 5Kennedy J,Eberhart R.Particle Swarm Optimization[C].1995 IEEE International Conference on Neural Networks,IEEE Service Center,Perth Australia,New Jersey:IEEE Press,1995:1942-1948.
  • 6Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].Symposium on Micro Machine and Human Science,1995:39-43.
  • 7齿轮手册编委会.齿轮手册:圆弧圆西半球齿轮传动[M].北京:机械工业出版社,2005:10-37.
  • 8C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308
  • 9J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985
  • 10D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998

共引文献513

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部