期刊文献+

不确定混沌系统用分数阶系统同步与参数辨识 被引量:3

Synchronization of Uncertain Chaotic System and Parameters Identification Using Fractional-Order Chaotic System
在线阅读 下载PDF
导出
摘要 针对不确定整数阶混沌系统的同步和参数辨识问题,提出一种新的策略即用分数阶混沌系统来同步整数阶混沌系统并实现不确定参数的辨识。首先引入预控制量并利用主动控制构造同步误差方程,然后用分数阶混沌系统稳定性理论和自适应控制理论,设计同步控制器及参数的自适应率,最终实现整数阶混沌系统用分数阶混沌系统同步和参数辨识。数值仿真实现参数不确定整数阶Lorenz系统用分数阶Lorenz系统进行同步和参数辨识仿真,结果表明提出方法的有效性。 This paper discusses synchronization of uncertain integral-order chaotic system and parameters identifi-cation. A new strategy for synchronization and parameters identification of integral-order chaotic system using frac-tional-order chaotic system was proposed in this paper. Firstly, the matrix of synchronization error was constructed u-sing pre-control and active control method, and then synchronization controller and the law of the adaptive parameters were designed based on the stability theory of the fractional-order system and adaptive control theory. A method for synchronization of uncertain integral-order chaotic system was proposed. Synchronization of integral-order Lorenz system using fractional-order Lorenz system was realized, and the uncertain parameters of Lorenz system were identi-fied. Theory and numerical simulations show the effectiveness of the develooed aDoroach.
出处 《计算机仿真》 CSCD 北大核心 2012年第9期191-194,共4页 Computer Simulation
基金 湖南省自然科学基金重点资助项目(2009JJ8006) 湖南省高校创新团队(复杂网络控制)
关键词 不确定混沌系统 分数阶混沌系统 同步 参数辨识 Uncertain chaotic system Fractional-order chaotic system Synchronization Parameters identifica-tion
  • 相关文献

参考文献8

二级参考文献30

共引文献59

同被引文献32

  • 1李丽香,彭海朋,杨义先,王向东.基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计[J].物理学报,2007,56(1):51-55. 被引量:27
  • 2LORENZ E N. Deterministic Nonperiodic Hew [ J ]. Journal of the Atmospheric Sciences, 1963,20 ( 2 ) : 130-141.
  • 3Rasappan, Suresh; Vaidyanathan, Sundarapandian. Global Cha- os Synchronization of WINDMI and Coullet Chaotic Systems u- sing Adaptive Backstepping Control Design [ J ]. Kyungpook Mathematical Journal, 2014,54(2) :293-320 .
  • 4Hartly T T, Lorenzo C F, Qammet H K. Chaos in a fractional oder Chua' s system[ J ]. IEEE Trans CAS-I, 1995 (42) :485-490.
  • 5Li C G,Chen G. Chaos in the fractional-order Chen system and its control[ J]. Chaos, Solitons and Fractals, 2004 ( 22 ) : 549 - 554.
  • 6Caputo M. Linear models of dissipation whose Q is almost fre- quency independent[ J ]. Annals of Geophysics, 1966,19 (4) : 383-393.
  • 7Matignon D. Stability results for fractional diferential equations with applications to control processing [ C ]//IMACS -SMC, Lille, France, 1996:963-968.
  • 8SUN M, TIAN L X, FU Y. An Energy Resources Demand-supply Systems and Its Dynamical Analysis[J]. Chaos, Solitons & Fractals, 2007, 32(1): 68-80.
  • 9LI X, XU W, LI R. Chaos Synchronization of the Energy Resource System[J]. Chaos, Solitons & Fractals, 2009, 40 (6): 42-52.
  • 10WANG Z L. Chaos Synchronization of An Energy Resource System Based on Linear ControI[J]. NonIinear Analysis: Real World Applications, 2010, 11(5): 3336-3343.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部