期刊文献+

基于Adaboost方法的车载嵌入式疲劳驾驶预警系统 被引量:20

An On-board Embedded Driver Fatigue Warning System Based on Adaboost Method
在线阅读 下载PDF
导出
摘要 提出一种基于Adaboost的实时算法,并应用于车载嵌入式系统。用红外光源和红外摄像头获取驾驶员的视频图像,对其疲劳状态进行监控。首先通过人脸检测定位驾驶员的人脸,然后提取人眼区域并对人眼闭合状态进行判断,基于PERCLOS标准制定了相应的预警机制,对潜在的疲劳驾驶进行判断并预警。该算法从PC移植到嵌入式平台并根据实验进行了优化,先后制作了多个车载嵌入式装置进行实车测试,达到了大于92%的准确率和少于1.5 s的判断响应时间。实验装置稳定可靠,可实际应用于营运车辆。 The authors proposed a real time driver fatigue detection algorithm based on Adaboost. The algorithm is applied in an on-board embedded system to monitor driver's status with infrared camera and active IR lamps. Face detection method is used to localize the eyes of the driver and the eye region is extracted to monitor the movement of eyelids. An alarm rule is designed based on the PERCLOS standard to detect drowsy driving. The algorithm is transplanted from PC to embedded platform and optimized by experiments. Several versions of on-board embedded system are designed and manufactured to test the algorithm, it can provide above 92% accuracy and under 1.5 s reaction time in real driving scenarios. The experiments show that the system is stable and it is available for commercial use.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期719-726,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 深港创新圈专项计划(SG200810140026A)资助
关键词 ADABOOST PERCLOS 疲劳驾驶 Adaboost PERCLOS fatigue driving
  • 相关文献

参考文献18

  • 1龚冠祥,梁杰申,梁辉宏.基于DSP的疲劳驾驶预警系统的设计[J].微计算机信息,2009,25(5):235-237. 被引量:5
  • 2Samuel G, Peter H. Fatigue, work-rest cycles, and psychomotor performance of New Zealand truck drivers. New Zealand Journal of Psychology, 2001, 30(1): 32-39.
  • 3Takahashi I, Yokoyama K. Development of a feedback stimulation for drowsy driver using heartbeat rhythms. Engineering in Medicine and Biology Society. Boston, 2011:4153-4158.
  • 4Rogado E, Garcia J, Barea R, et al. Driver fatigue detection system // Robotics and Biomimetics. Bangkok, 2009:1105 1110.
  • 5Celenk M, Eren H, Poyraz M. Prediction of driver head movement via Bayesian learning and ARMA modeling // Intelligent Vehicles Symposium. Xi'an, 2009:542-547.
  • 6Sandberg D, Wahde M. Particle swarm optimization of feedforward neural networks for the detection of drowsy driving//Neural Networks. Hong Kong, 2008: 788-793.
  • 7Kim Y, Youmin K, Hahn M. Detecting driver fatigue based on the driver's response pattern and the front view environment of an automobile // Second International Symposium. Osaka, 2008:237 240.
  • 8Garcia I, Bronte S, Bergasa L M, et al. Vision-based drowsiness detector for a realistic driving simulator// Intelligent Transportation Systems, 13th International IEEE Conference. Funchal, 2010:887-894.
  • 9Wang H, Cheng Y, Wang Qi, et al. A practical eye state recognition based driver fatigue detection method//CCPR 2009. Nanjing, 2009:1-5.
  • 10Ji Q, Lan P, Looney C. A probabilistic framework for modeling and real-time monitoring human fatigue. IEEE Transactions on Systems, Man, and Cybernetics: Part A, 2006, 36(5): 862-875.

二级参考文献10

共引文献74

同被引文献154

引证文献20

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部