期刊文献+

主动Overlay物联网QoS服务路由算法研究

Research on QoS Service Routing Algorithm for Overlay Internet of Things
在线阅读 下载PDF
导出
摘要 在物联网环境中,服务可能由任意多个结点汇聚而成,而传统的尽力而为的通信服务不能保证服务质量(QoS)。为此,首先提出了主动Overlay物联网服务路由逻辑拓扑结构,然后对物联网服务路由问题进行了建模。在此基础上,设计了基于Agent和蚁群优化(ACO)的主动Overlay物联网QoS蚁群服务路由算法。该算法结合移动A-gent对ACO进行了改进,实现了保证QoS的服务路径选择。最后从理论上证明了该算法的正确性和收敛性,同时通过仿真实验对该算法的实际性能进行了验证和比较。 In the internet of things,the service may be provided by any nodes together,and the traditional best-effort communication service can not guarantee quality of service(QoS).This paper established an active services Overlay routing logic topology structure,and made a model of the service routing problem for internet of things.On this basis,this paper proposed an active Overlay QoS service routing optimization algorithm based on Agent and ACO,which was improved with mobile Agent and QoS guaranteed service path selection.It is proved theoretically that the algorithm is correct and convergent.And the actual performance of this algorithm was tested and compared by simulation experiments.
出处 《计算机科学》 CSCD 北大核心 2012年第8期75-78,共4页 Computer Science
基金 国家自然科学基金(60673162) 北京自然科学基金(4073041)资助
关键词 物联网 服务路由 蚁群算法 主动Overlay QOS Internet of things Service routing Ant colony optimization Active Overlay QoS
  • 相关文献

参考文献16

二级参考文献73

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2HOU Lishan1,3,JIN ZHi1,2 & WU Budan1,4 1. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China,2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China,3. Institute of Software, Chinese Academy of Sciences, Beijing 100080, China,4. Graduate University of Chinese Academy of Sciences, Beijing 100049, China.Modeling and verifying Web services driven by requirements:An ontology-based approach[J].Science in China(Series F),2006,49(6):792-820. 被引量:15
  • 3Freville A. The multidimensional 0-1 knapsack problem: An overview [J]. European Journal of Operational Research, 2004, 155(1): 1-21
  • 4Leguizamon G, Crespo M L, Kavka C, et al. The ant colony metaphor for multiple knapsack problem [C] //Proc of the 3rd Congreso Argentinoen Ciencias de la Computacion. Piscataway: IEEE, 1997:1080-1090
  • 5Leguizamon G, Michalewicz Z. A new version of ant system for subset problems [C] //Proc of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1459- 1464
  • 6Rafael P H, Nikitas D. On the performance of the ant colony system for solving the multidimensional knapsack problem [C] //Proc of the 2003 IEEE Pacific Rim Conf on Communications, Computers and Signal Processing, Vol 1. Piscataway: IEEE, 2003: 338-341
  • 7Alaya I, Solnon C, Ghedira K. Ant algorithm for the multidimensional knapsack problem [C]//Proc of Int Conf on Bioinspired Methods and Their Applications. Ljubljana, Slovenia: Jozef Stefan Institute, 2004:63-72
  • 8Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [C] //Proc of Int Conf on Evolutionary Computation. Piscataway: IEEE, 1996: 622- 627
  • 9Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 1996, 26 (1) : 29-41
  • 10Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66

共引文献1201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部