期刊文献+

结合ICA和SVM进行蛋白质氧链糖基化位点的预测 被引量:1

Prediction of the Protein O-Glycosylation by Support Vector Machine Based on Independent Component Analysis
在线阅读 下载PDF
导出
摘要 为了提高蛋白质氧链糖基化位点的预测准确率,提出了把独立成分分析和支持向量机相结合的方法。实验样本(蛋白质序列)用稀疏编码方式编码,窗口长度为w=21,对于训练样本和待测样本,首先用独立成分分析法(ICA)提取了120个独立成分(特征),把这些独立成分作为支持向量机的输入,在特征空间用支持向量机(SVM)进行预测(分类)。实验结果表明,ICA+SVM的方法比PCA+SVM和SVM的好。预测准确率为88%。更进一步,用同一个蛋白质序列在不同窗口长度下的样本做实验,结果表明,窗口长度越长,预测准确率越高。 To improve the prediction accuracy of O-glycosylation sites,a new method of ICA+SVM is proposed.The samples(protein sequence) for experiment are encoded by the sparse coding with window size w=21,120 independent components(feature) are extracted by independent component analysis(ICA),then the prediction(classification) is done in feature space by support vector machines(SVM).The results of experiment show that the performance of ICA+SVM is better than that of PCA+SVM and SVM.The prediction accuracy is about 88%.Furthermore,we investigated the same protein sequence under various window size,the results indicate that the longer the length of protein sequence,the higher the prediction accuracy.
作者 杨雪梅
出处 《计算机与数字工程》 2012年第8期32-34,41,共4页 Computer & Digital Engineering
基金 陕西省教育厅科学研究计划项目(编号:No.11JK1050)资助
关键词 蛋白质 糖基化 预测准确率 独立成分分析 支持向量机 protein glycosylation prediction accuracy ICA SVM
  • 相关文献

参考文献7

  • 1Nishikawa, I. , Sakamoto, H. , Nounci, I. , et al. Prediction of the O-glycosylation sites in protein by layered neural networks and support vector mactiines[J]. Lecture Notes in Artificial Intelli- gence, Springer, LNAI 4252,2006 :953-960.
  • 2Kenta Sasaki, Nobuyoshi Nagamine, Yasubumi Sakakibara. Support vector machines prediction of N- and O-glyeosylation sites using whole sequence information and subcellular localiz- ition[J]. IPSJ Transactions on Bioinformatics, 2009 (2) : 25 -35.
  • 3Li, S. Predicting O-glycosylation sites in mammalian proteins by using SVMs[J]. Computational Biology and Chemistry, 2006, 30: 203-208.
  • 4Yong zi Chen. Prediction of muein-type O-Glycosylation sites in mammaliam protein using the composition of k-spaced amino acid pairs[J]. BMC Bioinformatics, 2008 (9) : 101.
  • 5Xuemei Yang, Yen-Wei Chen, Masahiro Ito, et al. Principal 2omponent Analysis of O-linked Glycosylation Sites in ProteinSequenee[C]//IEEE Third International Conference on IIHM- SP,2007,1(1):121- 126.
  • 6Aapo H yrarinen,Juha Karhunen, Erkki Oja. Independent Com- ponent Analysis[M]. A Wiley Interscience Publication, 2001: 210-211.
  • 7John Shawe-Taylor, Nello Cristianini. Kernel methods for Pat- tern Analysis[M]. Beijing: China Machine Press, 2005.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部