期刊文献+

基于分块颜色矩和灰度共生矩阵的图像检索 被引量:7

Image Retrieval based on Segment Color Moment and Gray Co-occurrence Matrix
在线阅读 下载PDF
导出
摘要 颜色和纹理是描述图像内容的两个重要视觉特征,提出了一种基于分块颜色矩和灰度共生矩阵相结合的图像检索方法。根据图像背景内容的差异,将图像分成大小相等的子块,通过HSV颜色空间非均匀量化,计算子块的颜色矩来描述图像的局部颜色特征。整体图像采用灰度共生矩阵作为其纹理特征。结合两者采用加权欧式距离计算图像相似度,从实验结果中得出该检索方法的有效性。 Color and texture are two important visual features of an image. An efficient image retrieval technique which uses segment color moment and gray level co-occurrence matrix is proposed. An image is partitioned into sub-blocks of equal size according to the different backgrounds. Color of each sub-block is extracted by quantifying the HSV color space into non-equal intervals and the local color feature is represented by calculating the color moment. Texture of the whole image is obtained by using gray level co-occurrence matrix. Euclidean distance with weights is used to calculate the similarity of the images in terms of the both combined features. The efficiency of the retrieval method is demonstrated with the results.
作者 岳磊
机构地区 上海理工大学
出处 《微计算机信息》 2012年第8期162-164,共3页 Control & Automation
关键词 图像检索 HSV模型 颜色矩 灰度共生矩阵 Image Retrieval HSV Model Color Moment Gray Level Co-occurrence Matrix
  • 相关文献

参考文献7

  • 1Michael J. Swain,Dana H. Ballard.Color Indexing[J].Intemational Journal of Computer Vision,1991,7(1): 11-32.
  • 2Markus Stricker,Alexander Dimai.Color Indexing with Weak Spatial Constraints [C].IS&T/SPIE Conference on Storage and Re- trieval for Image and Video Databases IV,San Jose,CA,1996,2670: 29--40.
  • 3贾婧,王忠芝.基于共生矩阵的图像检索系统的研究[J].微计算机信息,2010,26(29):202-203. 被引量:3
  • 4林克正,张彩华,刘丕娥.基于分块主颜色匹配的图像检索[J].计算机工程,2010,36(13):186-188. 被引量:20
  • 5孟庆涛,龚声蓉,刘纯平,王朝晖.一种基于图的颜色纹理区域分割方法[J].中国图象图形学报,2009,14(10):2092-2096. 被引量:6
  • 6Haralick R,Shanmugan K,Dinstein I.Texture Features for Image Classification[J].IEEE Transactions on Systems,Man and Cybernet- ics, 1973,3(6):610-621.
  • 7Ch.Kavitha, B.P.Rao, A.Govardhan.Image Retrieval Based On Color and Texture Features of the Image Sub-blocks[J].Imemation- al Journal of Computer applications,2011,15(7):33-37.

二级参考文献25

  • 1温泉彻,彭宏,黎琼.基于内容的图像检索关键技术研究[J].微计算机信息,2007,23(3):278-280. 被引量:15
  • 2薛少娟,左万利,赫枫龄.基于颜色分块全局直方图的图像检索方法及系统实现[J].吉林大学学报(理学版),2006,44(4):606-610. 被引量:6
  • 3董亮.一种基于内容的图像检索方法[J].科技情报开发与经济,2007,17(15):245-247. 被引量:3
  • 4Wu Z,Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [ J]. IEEE Transactions on PAMI, 1993,15 ( 11 ) : 1101 - 1113.
  • 5Sarkar S, Quantitative K L. Measures of change based on feature organization: eigenvalues and eigenvectors [ J ]. Computer Vision an Image Understanding, 1998,71 ( 1 ) : 110-136.
  • 6Ding C, Rcn X F, Zha H, et al. Spectral min-max cut for graph partitioning and data clustering [ A ]. In: Proceedings of the IEEE International Conference on Data Mining [ C ], Los Alamitos, CA, USA, 2001:107-114.
  • 7Rother C, Kolmogorov V, Blake A. " GrabCut"-interactive foreground extraction using iterated graph cuts [ J ]. ACM Transactions on Graphics, 2004 : 23 ( 3 ) : 309- 314.
  • 8Vicente S,Kolmogorov V,Rother C. Graph cut based image segmentation with connectivity priors[ A ]. In : Proceedings of IEEE Conference on Computer Vision and Pattern Recognition( CVPR08 ) [ C ], Anchorage, Alska, USA ,2008.
  • 9Campbell N, Vogiatzis G, Hernandez C,et al. Automatic 3D object segmentation in multiple views using volumetric graph-cuts[ A ]. In: Proceedings of the British Machine Vision Conference[ C ], University of Warwick, Warwick, UK,2007,1 : 530- 539.
  • 10Tang Zhen, Miao Zhen-jiang. Fast Background subtraction using improved GMM and graph cut [ A ]. In: Proceedings of Congress on Image and Signal Processing[ C ] , Hainan, China ,2008 : 181 - 186.

共引文献26

同被引文献60

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部