期刊文献+

嗜酸异养菌对自养菌Acidithiobacillus ferrooxidans金属离子抗性和生物浸出的影响 被引量:6

Influence of acidophilic heterotrophic bacteria on metal resistance and bioleaching by Acidithiobacillus ferrooxidans
原文传递
导出
摘要 【目的】了解嗜酸异养菌在诸如酸性矿坑水(AMD)和生物浸出体系等极端酸性环境中对浸矿微生物产生的影响。【方法】研究由嗜酸异养菌Acidiphilium acidophilum和自养菌Acidithiobacillus ferrooxidans经长期驯化后形成的共培养体系分别在Cd2+、Cu2+、Ni2+和Mg2+胁迫下的稳定性;并将此共培养体系应用于黄铁矿和低品位黄铜矿的生物浸出实验。【结果】在上述4种金属离子分别存在的条件下,异养菌Aph.acidophilum均能促进At.ferrooxidans对亚铁的氧化,提高其对能源利用的效率。共培养体系中的异养菌Aph.acidophilum使At.ferrooxidans对Cu2+的最大耐受浓度(MTC)由2.0 g/L提高到5.0 g/L,而且共培养的细胞数量与2.0 g/L Cu2+条件下生长的At.ferrooxidans纯培养相似。另外,共培养中的At.ferrooxidans对Mg2+的MTC也由12.0 g/L提高到17.0 g/L。生物浸出实验中嗜酸异养菌Aph.acidophilum促进了At.ferrooxidans对黄铁矿样品的浸出,浸出率较其纯培养提高了22.7%;但在含铁量较低的低品位黄铜矿浸出体系中共培养和At.ferrooxidans纯培养的浸出率均低于33%。在加入2.0 g/L Fe2+的低品位黄铜矿浸出体系中,共培养和At.ferrooxidans纯培养的浸出率均得到提高,分别达到52.22%和41.27%。【结论】以上结果表明,Aph.acidophilum与At.ferrooxidans共培养在一定的环境胁迫下仍能保持其稳定性并完成各自的生态功能,并且嗜酸异养菌Aph.acidophilum适合在含铁量较高的浸出体系中与铁氧化细菌共同作用来提高生物浸出的效率。 [Objective] To investigate the influence of acidophilic heterotrophic bacteria on Acidithiobacillus ferrooxidans in extremely acidic environment such as acid mine drainage (AMD) and bioleaching system. [Methods] A co-culture consists ofAph, acidophilum and At. ferrooxidans was separately exposed to four metal ions (Cd2+, Cu2+, Ni2+ and Mg2+) to test its stability. This co-culture was also applied to bioleaching of pyrite and low grade chalcopyrite. ]Results] In the metal resistance experiment, heterotrophic bacteria Aph. acidophilum facili- tated the ferrous iron oxidation by At. ferrooxidans and improved its efficiency of energy utilization. The maximum tolerant concentration (MTC) of At. ferrooxidans to Cu2+ was im- proved from 2.0 g/L to 5.0 g/L by Aph. acidophilum, and the cell density of co-culture in 5.0 g/L Cu2+ was almost the same with purely cultured At. ferrooxidans in 2.0 g/L Cu2+. In ad- dition, the MTC of co-cultured At. ferrooxidans to Mg2+ was also improved from 12.0 g/L to 17.0 g/L by Aph. acidophilum. In bioleaching experiment, the pyrite bioleaching efficiency of co-culture increased by 22.70% as compared with that of purely cultured At. ferrooxidans. While in the low grade chalcopyrite bioleaching system with few iron, the bioleaching effi- ciency of both At. ferrooxidans and its co-culture with Aph. acidophilum were lower than 33%. In the low grade chalcopyrite bioleaching system with pre-added 2 g/L Fe2+, the bioleaching efficiency of At. ferrooxidans and its co-culture with Aph. acidophilum were raised to 41.27% and 52.22%, respectively. ]Conclusion] Results in this study demonstrated that At. ferrooxi- clans and Aph. acidophilum in co-culture could maintain their physiological stability and sus- tain their ecological function under environmental stress. The bioleaching results suggested that acidophilic heterotrophic bacteria Aph. acidophilum should be applied to the bioleaching system with high iron concentration, in which it could collaborate with iron oxidation bacteria to improve the bioleaching efficiency.
出处 《微生物学通报》 CAS CSCD 北大核心 2012年第8期1069-1078,共10页 Microbiology China
基金 国家973计划项目(No.2010CB630901) 国家自然科学基金项目(No.31070104)
关键词 生物浸出 金属抗性 共培养 Acidiphilium acidophilum 嗜酸氧化亚铁硫杆菌 Bioleaching, Metal resistance, Co-culture, Acidiphilium acidophilum, Acidithiobacil-lus ferrooxidans
  • 相关文献

参考文献32

  • 1殷志勇,成海芳,张文彬.生物技术在湿法冶金领域的应用现状及研究趋势[J].湿法冶金,2006,25(3):113-116. 被引量:14
  • 2田克立,林建群,张长铠,颜望明.氧化亚铁硫杆菌铁氧化系统分子生物学研究进展[J].微生物学通报,2002,29(1):85-88. 被引量:10
  • 3Harrison AP Jr. Genomic and physiological comparisons between heterotrophic Thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev.[J]. International Journal of Systematic Bacteriology, 1983, 33(2): 211-217.
  • 4Harrison AP Jr. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat[J]. Annual Review of Microbiology, 1984, 38(1): 265-292.
  • 5Baker B J, Banfield JF. Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology, 2003, 44(2): 139-152.
  • 6Johnson DB, Bridge TAM. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.[J]. Journal of Applied Microbiology, 2002, 92(2): 315-321.
  • 7Marchand EA, Silverstein J. The role of enhanced heterotrophic bacterial growth on iron oxidation by Acidithiobacillus ferrooxidans[J]. Geomicrobiology Journal, 2003, 20(3): 231-244.
  • 8Hao J, Murphy R, Lim E, et al. Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4111-4123.
  • 9Gurung A, Chakraborty R. The role of Acidithiobacillus ferrooxidans in alleviating the inhibitory effect of thiosulfate on the growth of acidophilic Acidiphilium species isolated from acid mine drainage samples from Garubathan, India[J]. Canadian Journal of Microbiology, 2009, 55(9): 1040-1048.
  • 10Cabrera G, G6mez JM, Cantero D. Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures[J]. Process Biochemistry, 2005, 40(8): 2683-2687.

二级参考文献67

  • 1温建康,阮仁满,孙雪南.金川低品位镍矿资源微生物浸出研究[J].矿冶,2002,11(1):55-58. 被引量:23
  • 2李学亚,叶茜.微生物冶金技术及其应用[J].矿业工程,2006,4(2):49-51. 被引量:15
  • 3SUZUKI I, LEE D, MACKAY B, HARAHUC L, OH J K. Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans[J]. Applied and Environmental Microbiology, 1999, 65(11): 5163-5168.
  • 4TAKEUCHI TL, SUZUKI I. Cell hydrophobicity and sulfur adhesion of Thiobacillus thiooxidans[J]. Applied and Environmental Microbiology, 1997, 63(5): 2058-2061.
  • 5LAZAROFF N. The specificity of the anionic requirements for iron oxidation by Thiobacillus ferrooxidans[J]. Journal of General Microbiology, 1977, 101: 85-91.
  • 6LESIA H, HECTOR M L, ISAMU S. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillusferrooxidans[J]. Applied and Environmental Microbiology, 2000, 66(3):1031-1037.
  • 7LAZAROFF N. Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 1963, 85(1): 78-83.
  • 8FRYI V, LAZAROFF N, PACKER L. Sulfate-dependent iron oxidation by Thiobacillus ferrooxidans: characterization of a new EPR detectable electron transport component on the reducing side of rusticyanin[J]. Archives of Biochemistry and Biophysics, 1986, 246(2): 650-654.
  • 9CSONKAL N. Physiological and genetic responses of bacteria to osmotic stress[J]. Microbial Research, 1989, 53(1): 121-147.
  • 10ASPEDON A, PALMER K, WHITELEY M. Microarray analysis of the osmotic strvss response in pseudomonas aeruginosa[J]. Journal of Bacteriology, 2006, 188(7): 2721-2725.

共引文献73

同被引文献82

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部