期刊文献+

可计算图像美学研究进展 被引量:31

Review for computational image aesthetics
原文传递
导出
摘要 可计算图像美学研究目的是希望计算机能够模拟人类的视觉系统与审美思维对图像进行美学价值的判断。其研究成果可以应用到融合主观感知的基于语义的图像检索、图像美学质量评估、图像的美学修正、摄影的美学预测、艺术作品风格分析、人机交互等方面。该研究涉及美学、艺术、认知科学、计算机科学、心理学等多个学科,属于多学科交叉的创新性前沿研究课题,具有重要的理论研究价值和应用前景。总结国际上最新研究成果,对该研究的常用方法和存在问题进行了系统的分析及综述,给出了可计算图像美学分析研究的一般框架,对图像的审美度量、美学视觉特征提取和美学推导等关键技术,以及图像美学的应用与发展前景等进行了详细讨论,并且针对当前研究存在的问题提出关键的解决方案。 The purpose of the computational image aesthetics research is to endow computer with the ability to assess the aesthetics value of images as human beings do. The results can be used in many fields, for example semantic-based image retrieval, fusing the subjective perception, image aesthetics evaluation, image aesthetics retouching, photograph aesthetics prediction, art works style analysis and man-machine interaction. Computational image aesthetics is a new interdisciplinary advanced topic with good developing prospect, while it involves different subjects, including Aesthetics, Art, Cognitive Sci- ence, Computer Science, Psychology, and so on. In this paper, the latest achievements of the computation image aesthetics research are introduced at first, then a general framework of the computational image aesthetics is proposed after the analy- sis and summary of methods commonly applied in this field. Additionally, we point out the exiting problems and we discuss including image aesthetics measurement, extraction of aesthetics vision features, aesthetics deduction, and also the applica- tion and future developments of image aesthetics. Furthermore, some crucial solutions are pointed out to solve the exiting problems.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第8期893-901,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(60602014 60972132) 广东省自然科学基金团队项目(9351064101000003) 中央高校基本科研基金项目(2009ZM0180)
关键词 图像美学 美学视觉特征 美学度量 美学分类 image aesthetics aesthetics vision features aesthetics measure aesthetics classification
  • 相关文献

参考文献40

  • 1Hoening F. Defining computational aesthetics [ C ]//Proceedings of Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging. Switzerland: Eurographics Association, 2005 : 13-18.
  • 2Datta R, Joshi D, Li J,et al. Studying aesthetics in photographic images using a computational approach [ C ]//Proceedings of European Conference on Computer Vision. Heidelberg: Springer Berlin, 2006: 288-301.
  • 3Datta R, Wang J Z. ACQUINE: Aesthetic quality inference engine real-time automatic rating of photo aesthetics [ C ]//Proceedings of the ACM International Conference on Multimedia Information Retrieval. New York : Association for Computing Machinery, 2010: 421-424.
  • 4Wu Y, Bauckhage C, Thurau C. The good, the bad, and the ugly: predicting aesthetic image labels [ C]//Proceedings of 2010 20th International Conference on Pattern Recognition( ICPR 2010). Piscataway: Institute of Electrical and Electronics Engi- neers Inc, 2010 : 1586-1589.
  • 5Wong L K, Low K L. Saliency-enhanced image aesthetics class prediction [ C ]//Proceedings of 2009 IEEE International Conference on Image Processing( ICIP 2009). Piscataway: IEEE Computer Society, 2009:997-1000.
  • 6Luo Y, Tang X. Photo and video quality evaluation: focusing on the subject [ C ]//Proceedings of 2008 lOth European Conference on Computer Vision ( ECCV 2008 ). Heidelberg: Springer-Verlag, 2008,5304:386-399.
  • 7Li C, Tsuhan C. Aesthetic visual quality assessment of paintings [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2) :236-252.
  • 8Obrador P, Anguera X, Oliveira R. The role of tags and image aesthetics in social image search [ C ]//Proceedings of 17th ACM International Conference on Multimedia, Workshop on Social Media(ACM MM). New York: Association for Computing Machinery, 2009:65-72.
  • 9Subhabrata B, Rahul S, Mubarak S. A framework for photo quality assessment and enhancement based on visual aesthetics [ C ]// Proceedings of the ACM Multimedia 2010 International Confer- ence. New York: Association for Compnting Machinery, 2010: 271-280.
  • 10Phan T. Automated computational aesthetics for pervasive graphical advertisements [ C ]//Proceedings of the 2009 Workshop on Pervasive Advertising. Nara Japan : pervasiveadvertising, org, 2009.

二级参考文献2

  • 1Eiji Kawaguchi,Richard O Eason.Principle and applications of BPCS steganography[ A ].Proceeding of SPIE:Multimedia Systems and Applications[ C ].Bostor:SPIE,3528.464-472
  • 2TaiChung,HantanLu.BPCS steganography using EZW lossy compressed images[ J ].Pattern Recognition Letters,2002,23 (13):1579-1587.

共引文献18

同被引文献193

引证文献31

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部