期刊文献+

基于KGMM改进的动态目标检测算法 被引量:1

Improved dynamic target detection algorithm based on KGMM
在线阅读 下载PDF
导出
摘要 针对在线K-均值聚类法初始化混合高斯模型(KGMM)在运行时间、空间复杂度、噪声等方面存在的缺陷,提出了基于KGMM改进的检测方法,采用加入方差因子的C-均值聚类准则来初始化混合高斯模型,有效解决了可能出现的某一像素值属于不同分布类从而概率不同的问题,提高了检测的灵活性;改进了高斯匹配准则,提高了检测算法的准确性;对每个像素点间隔地建立混合高斯分布,减少了高斯模型个数,节省了存储空间,提高了算法的运行速度。实验结果表明改进的检测算法检测效果更理想。 The online K-means clustering method for initialization Gaussian mixture model (KGMM) with respect to run time, space complexity and noise have some disadvantages, this paper proposed an improved method of detection based on KGMM, added the variance factor to the C-means clustering criterion to initialize Gaussian mixture model. It effectively solved the problem that a pixel value may belong to different distribution classes driving different probabilities, and improved the flexibility of detection ; improved the matching criterion of Gaussian model and increased the accuracy of the detection algorithm; established mixed Gaussian distribution for every other pixel point, it reduced the amount of Gaussian model, saved storage space, and reduced the running time of the algorithm. The experimental results show that the effect of the improved detection algorithm is more ideal.
出处 《计算机应用研究》 CSCD 北大核心 2012年第8期3189-3191,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(50877010)
关键词 混合高斯模型 C-均值聚类 动态目标检测 Gaussian mixture model C-means cluster dynamic object detecting
  • 相关文献

参考文献9

二级参考文献35

  • 1王华伟,李翠华,施华,韦凤梅.基于HSV空间和一阶梯度的阴影剪除算法[J].计算机工程与应用,2005,41(8):43-44. 被引量:6
  • 2邱尚斌,李刚,林凌.一种新的运动目标检测和背景更新方法[J].辽宁工学院学报,2005,25(1):10-12. 被引量:10
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:170
  • 4胡炜炜,李树广,吴舟舟.序列图像的自适应背景提取及车型分类[J].计算机工程与应用,2007,43(12):239-242. 被引量:8
  • 5Stringa E,Regazzoni C S.Real-time video-shot detection for scene surveillance applications[J].IEEE Transactions on Image Processing, 2000( 1 ) :69-79.
  • 6Versavel J.Road safety through video deteetion[C]//Proeeedings of 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Trans- portation Systems, 1999:753-757.
  • 7Collins R.A system for video surveillance and monitoring:VSAM final report,CMU-RI-TR-00-12[R].Carnegie Mellon University, 2000.
  • 8Kong Jun,Zheng Ying,Lu Ying-hua,et al.A novel background extraction and updating algorithm for vehicle detection and trackin[C]// Forth International Conference on Fuzzy Systems and Knowledge Discovery, 2007,3 : 464-468.
  • 9C.海顿.交通冲突技术[M].张苏译.成都:西南交通大学出版社,1994.
  • 10Gloyer B, Aghajan H K, Siu K Y, et al. Video-based freeway monitoring system using recursive vehicle tracking[C]//SPIE Proceeding, Image and Video Processing Ⅲ. Sydney: SPIE, 1995, (2421) : 173 - 176.

共引文献160

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部