期刊文献+

基于道路模型的弯道检测研究与应用 被引量:4

Curved Road Detection Based on Roadway Design Model
在线阅读 下载PDF
导出
摘要 基于机器视觉的弯道图像能提供车辆行驶道路环境的丰富信息,从建立弯道模型、提取车道线像素点以及拟合车道模型等步骤分析了传统基于道路模型的弯道检测方法,针对传统方法很难适用于多种不同形状弯道的特点,提出一种基于特征点提取的弯道检测新方法;介绍了弯道检测在车道偏离预警、弯道限速以及弯道防碰撞预警等领域的应用情况;最后提出弯道检测应该建立三维车道线模型、注重发展多传感器融合技术,提高其适用性和鲁棒性。 Curved road images based on machine vision can provide a lot of information about driving environment.The traditional curved road detection methods are analyzed according to the detection steps.The detection steps includes establishment of curve model,extracting lane pixels and fitting of lane model.The traditional curved road detection methods are not appropriate for different types of curved roads.A new curved road detection method based on feature point extraction is proposed.Then,the applications of warning systems based on the curved road detection are presented,including lane departure warning system,speed warning system,front collision warning system for curved highway and so on.Finally,future research on curved road detection is advised to establish a three-dimensional lane model and to focus on the development of multi-sensor fusion technology to improve its applicability and robustness.
出处 《交通信息与安全》 2012年第3期141-146,共6页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(批准号:61104165)资助
关键词 机器视觉 道路模型 弯道检测 预警系统 machine vision road model curved road detection warning system
  • 相关文献

参考文献37

  • 1Jung C R, Kelber C R. A lane departure warning system using lateral offset with uncalibrated camera [C]//IEEE Conference on Intelligent Transporta- tion Systems, Vienna, Austria : IEEE, 2005.
  • 2黄勇,蒋工亮,孙朕,段伟建,庹永恒.基于图像处理技术的高速公路弯道车速预警系统的研究[J].山东交通学院学报,2009,17(4):23-27. 被引量:10
  • 3蓝天,张学军,郑丽英.汽车弯道前方碰撞预警控制系统研究[J].兰州交通大学学报,2010,29(1):30-33. 被引量:4
  • 4孟丽霞,孙富春,邵宇.基于单目视觉的道路图像理解综述[J].计算机应用,2010,30(6):1552-1555. 被引量:6
  • 5Chiu K Y, Lin S F. Lane detection using color- based segmentation [C]// Proceedings of IEEE In- telligent Vehicles Symposium, Lasvegas, Nevada, USA: IEEE, 2005 : 706-711.
  • 6Wang Y, Shen D, Teoh E K. Lane detection using Catmull-Rom spline [C]// IEEE International Con- ference on Intelligent Vehicles, Piscataway NJ, USA: IEEE, 1998 : 51-57.
  • 7刘涛,黄席樾,周欣,黎昱.高速公路弯道识别算法[J].重庆大学学报(自然科学版),2003,26(7):24-27. 被引量:23
  • 8Kluge K. Extracting road curvature and orientation from image edge points without perceptual grouping into features[C]///IEEE Symposium on Intelligent Vehicles, Paris, France: IEEE, 1994 : 109-114.
  • 9Khalifa 0 O, Khan I M, Assidiq A A M,et al. A hyperbola-pair based lane detection system for vehi- cle guidance[C] // World Congress on Engineering and Computer Science, Sanfrancisco, USA : IAENG, 2010:585-588.
  • 10Jung C R, Kelber C R. An improved linear-para-bolic model for lane following and curve detection [C] // 8th Brazilian Symposium on Computer Graphics and Image Processing, Brazil: IEEE, 2005:131-138.

二级参考文献149

共引文献174

同被引文献37

  • 1张德兆,王建强,李升波,李克强.基于风险状态预估的弯道防侧滑超速预警系统[J].公路交通科技,2009(S1):44-48. 被引量:18
  • 2刘俊承,王淼鑫,彭一准.一种基于视觉信息的自主搬运机器人[J].科学技术与工程,2007,7(3):314-319. 被引量:13
  • 3李铁洪,吴华金.长直线接小半径曲线公路交通事故成因及预防对策[J].中国公路学报,2007,20(1):35-40. 被引量:38
  • 4CH1U K Y, L1N S F. Lane delection using color-based segmen- tation [C]// Proceedings of IEEE Intelligent Vehicles Sympo- sium. LasVegas, Nevada, USA: IEEE, 2005: 706-711.
  • 5WANG Y, SHEN D G, TEOH E K. Lane detection using Cat- mull-Rnnl spline [C]// Proceedings of the 1998 IEEE Interna- tional Conference on Intelligent Vehicles. Piscataway, NJ. USA: 1EEE, 1998: 51-57.
  • 6公安部交通管理局.中华人民共和国道路交通事故统计年报(2012年度).无锡:公安部交通管理科学研究所,2013.
  • 7公安部交通管理局.中华人民共和国道路交通事故统计年报(2011年度).无锡:公安部交通管理科学研究所,2012.
  • 8公安部交通管理局.中华人民共和国道路交通事故统计年报(2010年度).无锡:公安部交通管理科学研究所,2011.
  • 9Kharagpur. Unit curve for design of highway transitions[J]. Journal of Transportation Engineering, 2002,121 (2) : 169-175.
  • 10Dabbour E, Raahemifar K, Easa S. Optimum verti- cal curves for highway profilesusing nonlinear opti- mization[C] // Annual Conference of the Canadian Society for Civil Engineering, Montr6al, Qu6bec, Canada: of the Canadian Society for Civil Engineer- ing, 2002:1-9.

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部