期刊文献+

北羌塘盆地中部上侏罗统研究新进展 被引量:13

New Advances in the Research on the Upper Jurassic in the Middle of the North Qiangtang Basin
在线阅读 下载PDF
导出
摘要 北羌塘盆地腹地自然条件恶劣 ,地层研究难度极大。经在北羌塘盆地腹地东湖、河湾山、长水河及半岛湖等地进行了详细的岩石地层及生物地层研究工作 ,依据岩石特征和生物化石特征 ,将上侏罗统二分 :下部灰岩层为索瓦组 ,含 L acunosella triobatiformis- Pentithyris vulgaris、Radulopecten fibrosus- Gervillella aviculoides组合 ,其时限为牛津期 ;上部灰岩、碎屑岩互层为白龙冰河组 ,具 Radulopecten scarburgensis、R.moondanensis、Cladophylliaqeibulaensis、Stylosmilia chaputi化石 ,其主体时限为基默里奇期—提塘期 ,顶部可能跨入早白垩世。白龙冰河组的确立 。 It is difficult to study the strata in the middle of the North Qiangtang Basin, because the natural condition is very poor there. The authors have detailedly researched the lithostratigraphy and biostratigraphy of Donghu,Hewanshan,Changshuihe and Bandaohu. Based on lithostratigraphy and fossil characters, the Upper Jurassic can be divided into two parts. The lower one is the Suowa Formation connsisting of limestones containing Lacunosella trilobatiformis Pentithyris vulgaris, Radulopecten fibrosus Gervillella aviculoides assemblages of Oxfordian age. The upper one is the Bailongbinghe Formation consisting of limestones and clastic rocks and containing Radulopecten scarburgensis, R.moondanensis, Cladophyllia qeibulaensis, Stylosmilia chaputi of Kimmerdgian Berriasian age. The establishing of the Upper Jurassic Bailongbinghe Formation is a new advance in the lithostratigraphical and biostratigraphical researches.
出处 《地层学杂志》 CSCD 北大核心 2000年第2期163-167,共5页 Journal of Stratigraphy
基金 石油天然气总公司项目
关键词 北羌塘盆地 西藏 上侏罗统 白龙冰河组 地层 North Qiangtang Basin, Tibetan, Jurassic, Suowa Formation, Bailongbinghe Formation
  • 相关文献

参考文献7

二级参考文献20

  • 1曹珍富.密码学的新发展[J].四川大学学报(工程科学版),2015,47(1):1-12. 被引量:27
  • 2Dwork (2. Differential privacy[C]//Proeeedings of the 33rd in- ternational conference on Automata, Languages and Program- ming-Volume Part II. Springer-Verlag, 2006 : 1-12.
  • 3Xu J, Zhang Z, Xiao X, et al. Differentially private histogram publication[J]. The VLDB Journal-The International Journal on Very Large Data Bases, 2013,22 (6) : 797-822.
  • 4Blum A, Ligett K, Roth A. A learning theory approach to non- interactive database privacy[C]//STOC'08. 2008:609-618.
  • 5McSherry F,Talwar K. Mechanism design via differential priva- cy[C]//48th Annual IEEE Symposium on Foundations of Com- puter Science, 2007. FOCS' 07. IEEE, 2007 : 94-103.
  • 6Li Hang. Statistics learning method[M]. Beijing: Tsinghua uni- versity press, 2012 : 47-52.
  • 7Mohammed N, Chen R, Fung B, et al. Differentially private data release for data mining[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2011 : 493-501.
  • 8Zhang J, Cormode G, Procopiuc C M, et al. PrivBayes: Private Data Release via Bayesian Networks[C/OL]. [2014-7-8].
  • 9ht- tp://dimacs, rutgers, edu/ graham/pubs/papers/PrivBayes. pdf.
  • 10Bache K, Lichman M. UCI Machine Learning Repository[DB/ OL]. [2014-7-8]. http://archive, ics. uci. edu/ml.

共引文献74

同被引文献224

引证文献13

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部