期刊文献+

基于特征子空间的自适应多视角目标跟踪算法 被引量:4

Adaptive subspace tracking algorithm on multi-view videos
在线阅读 下载PDF
导出
摘要 提出了一种新的自适应特征子空间跟踪算法,该算法通过计算跟踪目标的似然来自适应调整模型更新的权重,以减小更新过程中样本误差积累导致的模型漂移。同时,跟踪算法利用多视角贝叶斯理论框架进行多视角的信息融合,并对跟踪模型进行分块处理和更新,以提高跟踪精确度。仿真结果表明,本算法比对比算法的跟踪误差更小,并能够更好地解决目标遮挡和形变等问题,从而得到精确、高效的跟踪结果。 A new adaptive subspace tracking algorithm is proposed in this paper. The algorithm updates the appearance model in subspace by using the likelihood of the sample in order to eliminate the model drift. It processes and fuses the data in distributed way on different views under the Bayesian tracking framework, and employs multi-part appearance model for matching and updating to achieve more accurate tracking result. Experiments show that the proposed algorithm features a smaller tracking error than the comparison algorithms especially under occlusion and appearance variation, and it can track the object effectively and accurately.
出处 《信息与电子工程》 2012年第3期319-324,共6页 information and electronic engineering
基金 国家重大专项基金资助项目(No.2011ZX03003-001-02 No.2012ZX03001007-003) 华为合作项目(No.YBWL2010190)
关键词 多视角目标跟踪 自适应子空间更新 粒子滤波 分块观测模型 multi-view object tracking adaptive subspace update particle filter multi-part observation model
  • 相关文献

参考文献12

  • 1Du W,Hayet J B,Verly J,et al. Ground-target tracking in multiple cameras using collaborative particle filters and principal axis-based integration[J]. IPSJ Transactions on Computer Vision and Applications, 2009,1:58-71.
  • 2Pan P,Schonfeld D. Video Tracking Based on Sequential Particle Filtering on Graphs[J]. IEEE Transaction on Image Processing, 2011,20(6): 1641-1651.
  • 3冯巍,胡波,杨成,林青,杨涛.基于贝叶斯理论的分布式多视角目标跟踪算法[J].电子学报,2011,39(2):315-321. 被引量:7
  • 4FAN Jingjing,XIN Yanzhe,DAI Fenglin,et al. Distributed multi-camera object tracking with Bayesian Inference[C]//IEEE International Symposium on Circuits and Systems. Rio de Janeiro:[s.n.], 2011:357-360.
  • 5Wang Zhou,Bovik A C,Sheikh H R,et al. Image Quality Assessment:From Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
  • 6P e rez P,Hue C,Vermaak J,et al. Color-based probabilistic tracking[C]//Proceedings of the 7^th European Conference on Computer Vision. London:Springer-Verlag, 2002:661-675.
  • 7PAN Jiyan,HU Bo,ZHANG Jianqiu. Robust and Accurate Object tracking under various types of occlusions[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(2):223-236.
  • 8Ho Jeffrey,Lee Kuang Chih,Yang Ming Hsuan,et al. Visual Tracking Using Learned Linear Subspaces[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D C,USA:[s.n.], 2004:782-789.
  • 9YANG Ming,FAN Zhimin,FAN Jialue,et al. Tracking Nonstationary Visual Appearances by Data-Driven Adaptation[J]. IEEE Transactions on Image Processing, 2009,18(7): 1633-1644.
  • 10Gai Jiading,Stevenson R L. Studentized Dynamical System for Robust Object Tracking[J]. IEEE Transactions on Image Processing, 2011,20(1): 186-199.

二级参考文献16

  • 1常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 2周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 3Rinner B, Wolf W. An introduction to distributed smart cameras [ J]. Proceedings of the IEEE, 2008,96(10) : 1565 - 1575.
  • 4Sankaranarayanan A C, Veeraraghavan A, Chellappa R. Object detection, tracking and recognition for multiple smart cameras [ J]. Proceedings of the IEEE, 2008,96(10) : 1606 - 1624.
  • 5Chang T H, Gong S. Tracking multiple people with a multi- camera system[ A ]. Proceedings of IEEE Workshop on Multi Object Tracking[ C]. Vancouver, 2001.19 - 26.
  • 6Fleuret F, Berclaz J, Lengagne R et al. Multicamera people tracking with a probabilistic occupancy map[ J]. IEF, F, Transac tions on Pattern Analysis and Machine Intelligence, 2008, 30 (2) :267 - 282.
  • 7Qin C, Jade A. Tracking human motion in structured environ ments using a distributed-camera system[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 ( 11 ) : 1241 - 1247.
  • 8Wei D, Jean-Bearnard H,Jacques V,et al. Ground-target Irack- ing in multiple cameras using collaborative particle filters and principal axis-based integration[J]. IPSJ Transactions on Com- puter Vision and Applications, 2009,1 : 58 - 71.
  • 9Xue W, Sheng W, Daowei B. Distributed visual-target-surveil- lance system in wireless sensor networks[ J]. 1EEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2009,39 (5):1134- 1146.
  • 10Xue W, Sheng W, Daowei B. Distributed visual-target-surveil lance system in wireless sensor networks[ J]. 1EEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2009,39 (5):1134- 1146.

共引文献6

同被引文献34

  • 1李忻,聂在平.MIMO信道中衰落信号的空域相关性评估[J].电子学报,2004,32(12):1949-1953. 被引量:22
  • 2张广军.机器视觉[M].北京:科学出版社,2008:84-85.
  • 3WINTERS J H. Smart antennas for wireless systems[J].{H}IEEE Personal Communications,1998,(01):23-27.
  • 4Lei Z,Chin F P S,Liang Y C. Combined beamforming with space-time block coding for wireless downlink transmission[A].Vancouver,Canada:IEEE,2002.2145-2148.
  • 5ZHU F,LIM M S. Combined beamforming with space-time block coding using double antenna array group[J].{H}Electronics Letters,2004,(13):811-813.
  • 6KIM I H,LEE K,CHUN J. An MIMO antenna structure that combines transmit beamforming and spatial multiplexing[J].{H}IEEE Transactions on Wireless Communications,2007,(03):775-779.
  • 7Ozcelik H,Herdin M,Weichselberger W. Deficiencies of Kronecker MIMO radio channel model[J].Electronics Letters(S0013-5194),2003,(16):1209-1210.
  • 8Xu R,Lau FCM. Performance analysis for MIMO systems using zero forcing detector over fading channels[J].IEE Proc Commun,2006,(01):74-80.
  • 9Glover I A;Grant P M;张力军;张宗橙.数字通信[M]{H}北京:电子工业出版社,2003.
  • 10John Fitzpatrick. Simulation of a Multiple Input Multiple Output(MIMO)wireless system[J].Dublin City University School Chool of Electronic Engineering,2004,(02):43-45.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部