期刊文献+

基于OMP的非合作宽带脉冲压缩雷达信号的压缩感知研究 被引量:6

Compressive Sensing Research of Uncooperative Wideband Pulse Compression Radar Signal by Orthogonal Matching Pursuit Algorithm
在线阅读 下载PDF
导出
摘要 压缩感知技术可以用来实现对非合作宽带信号的欠采样快速处理。宽带脉冲压缩雷达能够有效解决雷达探测距离和距离分辨力的矛盾,在探测领域得到了广泛应用,为实现对非合作宽带脉冲压缩雷达信号的快速欠采样接收处理,本文首先开展了信号稀疏分解与重构算法研究,通过对贪婪算法、凸松弛类算法、组合类算法三大算法进行对比分析,选用了运行速度快且重构精度高的正交匹配追踪(OMP)算法针对非合作宽带脉冲压缩雷达信号进行压缩感知仿真分析。仿真结果表明:在一定信噪比条件下,OMP算法完全能够实现对非合作宽带脉冲压缩雷达信号的欠采样和信号重构,从而实现了对非合作宽带雷达信号的欠采样处理,为处理非合作超宽带雷达信号提供了很好的理论指导。 Compressive sensing technology is used to realize fast sub-Nyquist sampling process of uncooperative wideband signal,wideband pulse compress radar can resolved conflict between radar range and radar range discrimination effectively and is applied in the detecting field.The research of signal sparse decomposition and reconstruction algorithm are carried out firstly for the fast sub-Nyquist sampling process of uncooperative wideband pulse compress radar signal.OMP algorithm which has some characteristics such as rapid operating rate and high reconstructive precision is picked up among greedy algorithm,protruding relaxation algorithm and combination algorithm.Then OMP algorithm is carried out in the compressive sensing simulation analysis of uncooperative wideband pulse compress radar signal.It is showed by simulated conclusion that OMP algorithm can be used to complete sub-Nyquist sampling and reconstruction of uncooperative wideband pulse compress radar signal under suitable SNR condition,which will offer better theoretical guidance for the processing problem of uncooperative super wideband radar signal.
出处 《信号处理》 CSCD 北大核心 2012年第6期900-906,共7页 Journal of Signal Processing
基金 863计划项目(编号:2010AA7010422) 湖北省自然科学基金项目(批准号:2009CDB337)
关键词 正交匹配追踪 非合作 宽带脉冲压缩雷达信号 压缩感知 信号重构 orthogonal matching pursuit non-cooperation signal of wideband pulse compress radar compressive sensing signal reconstruction
  • 相关文献

参考文献10

  • 1D. Needell and J. A. Tropp," CoSaMP: Iterative signal re- covery from incomplete and inaccurate samples," [ J ] Presented at Information Theory and Applications, 31. January. 2008.
  • 2J. A. Tropp and A. C. Gilbert, "Signal recovery from partial information via orthogonal matching pursuit," [ OL ] www- personal, umich, edu/-jtropp/papers/TG05-Signal-Recov- ery. pdf, April. 2005.
  • 3D. L. Donoho, Y. Tsaig, I. Drori etc, "Sparse solution of underdetermincd linear equations by stagewise orthogonal matching pursuit," [ R]. Technical Report, March. 2006.
  • 4D. Needell, R. Vershynin, "Signal recovery from incom- plete and inaccurate measurements via regularized orthog- onal matching pursuit," [ OL ] http : J//www. math. uc- davis, edtt/% 7Evershynin/papers/ROMP-stability. pdf.
  • 5S. J. Kim, K. Koh, M. Lustig, S. Boyd and Gorinevsky, "A Interior-Point method for large-scale l-regularized least squares,"[ J ]. IEEE Journal on Selected Topics in Signal Processing, December. 2007,1 (4) :606-617.
  • 6M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, "Gradi- ent projection for sparse reconstruction: Application to compressed sensing and other inverse problems," [ J ]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Process- ing,2007,1 (4) :586-598.
  • 7A. C. Gilbert, M. J. Strauss, J. A. Tropp and R. Vershynin, "Algorithmic linear dimension reduction in the z norm forsparse vectors," [ OL ]. http :// www. math. ucdavis, edu/ vershynin/papers/algorithmic-dim-reduction, pdf.
  • 8A. C. Gilbert, M. J. Strauss, J. A. Tropp and R. Vershy- nin, "One sketch for all: Fast algorithms for compressed sensing, "[ A ]. Proceedings of the 39th Annual ACM Symposium on Theory of Computing[ C]. New York :As- sociation for Computing Machiner,2007,237-246.
  • 9丁鹭飞 耿富录.雷达原理[M].西安电子科技大学出版社,2000..
  • 10林茂庸.雷达信号理论[M].国防工业出版社.

共引文献30

同被引文献40

  • 1丁屹峰,占勇,程浩忠,孙毅斌,陆融.基于Prony算法的暂态电能质量扰动信号分析[J].上海交通大学学报,2005,39(S1):36-38. 被引量:6
  • 2何顺忠.采用Meyer小波变换的电能质量扰动信号的检测与时频分析[J].黑龙江电力,2004,26(6):454-457. 被引量:5
  • 3何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J].中国电机工程学报,2006,26(10):33-39. 被引量:50
  • 4Hu Lingli, Boutros NN, Jansen BH. Evoked potential variability [ J ]. Journal of Neuroscience Methods, 2009, 178(1) : 228-236.
  • 5Chan FHY, Lain FK, Poon PWF, Qiu W. Detection of brainstem auditory evoked potential by adaptive filtering [J]. Medical and Biological Engineering and Compu- ring, 1995, 33 ( 1 ) : 69-75.
  • 6Qiu Wei, Chang Chunqi, Liu Wenqing, Poon PWF, Hu Yong, Lam FK, Hamernik RP, Wei Gang, Chan FHY. Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials [ J]. IEEE Transactions on Biomedical Engineering, 2006, 53 ( 2 ) : 226-237.
  • 7Causevic E, Morley RE, Wickerhauser MV, Jacquin AE. Fast wavelet estimation of weak biosignals [ J ]. IEEE Transactions on Biomedical Engineering. 2005, 52 (6) : 1021-1032.
  • 8Lemm S, Curio G, Hlushchuk Y, MUller KR. Enhancing the signal-to-noise ratio of ICA-based extracted ERPs [J ]. IEEE Transactions on Biomedical Engineering. 2006, 53(4) : 601-607.
  • 9Xu Peng, and Yao Dezhong. Development and evaluation of the sparse decomposition method with mixed nver-com- plete dictionary for evoked potential estimation [ J ]. Com- puters in Biology and Medicine. 2007, 37 (12): 1731-1740.
  • 10Fadili M J, Starck JL, Bobin J, Moudden Y. hnage De- composition and Separation Using Sparse Representations: An Overview [ J ]. Proceedings of the IEEE. 2010, 98 ( 6 ) : 983-994.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部