期刊文献+

基于贝叶斯压缩感知的子空间拟合DOA估计方法 被引量:8

A Novel Subspace Fitting Method for DOA Estimation Based on Bayesian Compressive Sensing
在线阅读 下载PDF
导出
摘要 经典加权子空间拟合算法需进行多维非线性优化,初始参数的难以设置和较大的计算量限制了其应用。结合压缩感知理论,本文提出了一种基于改进贝叶斯压缩感知的子空间拟合DOA估计新方法。该方法首先通过低复杂度的子空间分解算法PASTd估计信号加权子空间,进而基于入射信号的空域稀疏性,将信号子空间拟合建模为多测量值稀疏重构问题,并应用贝叶斯压缩感知算法进行求解。算法在贝叶斯压缩感知的迭代求解中引入了基于相对阈值判决的基消除机制,加快收敛速度的同时避免了矩阵奇异问题。仿真结果表明本文算法在低信噪比、小快拍情况下空间分辨率优于MUSIC和l1-SVD算法,可直接用于相干源的估计,并对信源数目的估计误差具有较强鲁棒性。 The application of conventional Weighted Subspace Fitting(WSF) algorithm,which involves multidimensional nonlinear optimization,is limited for its huge computational burden and difficult initial parameter setting.Combing compressive sensing theory,a novel WSF algorithm for narrowband DOA estimation based on modified Bayesian Compressive Sensing(BCS) is proposed in this paper.The Projection Approximation Subspace Tracking deflation(PASTd) algorithm is utilized to efficiently estimate both the signal eigenvalues and corresponding eigenvectors,which significantly reducing the computation burden compares to the singular value decomposition of the sample covariance matrix.Exploiting the prior knowledge of spatial sparsity,we reformulate the WSF to a sparse signal reconstruct problem in the context of the multiple measurement vectors.Furthermore,a basis pruning mechanism via iterative relative thresholding is presented to speed up the convergence rate and avoid the matrix singular drawback during the original BCS iteration.Computer simulation results are presented and analyzed,demonstrating a number of advantages of the proposed method,including increased spatial resolution with low SNR and limited number of snapshots compared with MUSIC and l1-SVD,improved robustness to the source number estimation error and can be directly applied to the scenarios where highly correlated or coherent sources are presented without any preprocessing.
出处 《信号处理》 CSCD 北大核心 2012年第6期827-833,共7页 Journal of Signal Processing
基金 "新一代宽带无线移动通信网"国家科技重大专项课题(2010ZX03006-002-04)
关键词 波达方向 子空间拟合 贝叶斯压缩感知 基消除 PASTd direction-of-arrival subspace fitting Bayesian compressive sensing basis pruning PASTd
  • 相关文献

参考文献14

  • 1Ottersten B, Viberg M. Analysis of Subspace Fitting based Methods for Sensor Array Processing [ C ]. Proc. on IC- ASSP- 89,1989,2807-2810.
  • 2Ottersten B,Viberg M. Sensor Array Processing based on Subspace Fitting [ J]. IEEE Trans. Signal Proc. 1991,39 (5) :1110-1121.
  • 3Donoho D L. Compressed Sensing [ J ]. IEEE Trans. Info. Theory ,2006,52 (4) : 1289-1306.
  • 4Baraniuk R G. Compressive Sensing[ J]. IEEE Signal Pro- cessing Mag. 2007,24 (4) : 118-120,124.
  • 5Malioutov D, Cetin M, WiIIsky A S. A Sparse Signal Re- construction Perspective for Source Localization with Sen- sor Arrays [ J ]. IEEE Trans. Signal Proc. 2005,53 (8) : 3010-3022.
  • 6贺亚鹏,李洪涛,王克让,朱晓华.基于压缩感知的高分辨DOA估计[J].宇航学报,2011,32(6):1344-1349. 被引量:32
  • 7Cotter S. Multiple Snapshot Matching Pursuit for Direction of Arrival (DOA) Estimation [ C ]. Proc. Euro. Signal Process. Conf. ,2007,247-251.
  • 8Ji Shihao, Xue Ya, Carin L. Bayesian Compressive Sensing [J]. IEEE Tran. Signal Proc. ,2008,56(6) :2346-2356.
  • 9Tipping M E. Spares Bayesian Learning and the Relevance Vector Machine[ J ] , J. Machine Learning Res. , 2001,1(3) :211-244.
  • 10Wipf D P, Rao B D. Sparse Bayesian Learning for Basis SeLection [ J ]. IEEE Trans. Signal Proc. 2004,52 ( 8 ) : 4036- 4048.

二级参考文献28

  • 1王成,胡卫东,郁文贤.基于非平稳时间序列处理的雷达信号融合[J].信号处理,2005,21(4):338-343. 被引量:9
  • 2K M Cuomo,J E Piou,et al.Ultrawide-band Coherent processing[J].IEEE Transactions,1999,47(4):1094-1107.
  • 3LD Vann,KM Cuomo,et al.Multisensor Fusion Processing for Enhanced Radar Imaging[R].Lexington,Massachusetts,United States:Lincoln Laboratory,2000.1-73.
  • 4T G Morre,B W Zuerndorfer,et al.Enhanced imagery using spectral-estimation-based techniques[J].Lincoln Laboratory Journal,1997,10(2):171-186.
  • 5Krishna Naishadham,Jean E Piou,et al.State-Space Spectral Estimation of Characteristic Electromagnetic Responses in Wideband Data[J].IEEE Antennas and Wireless Propagation Letters,2005,4 ; 406-409.
  • 6MATI WAX,ILAN ZISKIND,et al.Detection of the Number of Coherent Signals by the MDL Principle[J].IEEE Transactions on Acoustics.Speech.And Signal Processing,1999,37(8):1190-1196.
  • 7Chen,S,Basis Pursuit[D].博士论文,Standford University Statistics,1995.
  • 8汪雄良.基追踪方法及其在图像处理中应用的研究[D].博士论文,国防科技大学,2006.
  • 9D.L.Donoho,Michael Elad,et al.Optimally Sparse Representation in General Dictionaries via l1 Minimization[C].PNAS,2003,100(5),2197-2202.
  • 10David Pual Wipf,Bayesian Methods for Finding Sparse Representations[D].博士论文,University of California,2006.

共引文献37

同被引文献43

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部