期刊文献+

分布式压缩感知实现联合信道估计的方法 被引量:10

The Method of Achieving Simultaneous Channels Estimation on Distributed Compressed Sensing
在线阅读 下载PDF
导出
摘要 针对无线通信中多个信道之间存在相关性的现象,本文研究了基于压缩感知的联合信道估计。通过选取多个节点与簇头之间的信道为研究背景,本文建立了多信道下的联合信道估计模型,推导了判决门限与信噪比之间的关系,提出了基于门限自适应-正交匹配追踪联合重构技术(TA-SOMP)的信道估计算法,并进行了相应的仿真实验。仿真结果表明:与经典的正交匹配追踪(OMP)算法相比,本文算法所重构的信道与原始信道之间的均方误差(MSE)更小,传输信号误比特率(BER)更低;在相同信噪比环境下,TA-SOMP算法所需导频数量更少,频带利用率更高。 Aiming at existing phenomenon of the correlation between channels in the wireless communication,we studied the simultaneous channel estimation method based on compressed sensing.By selecting multiple channels between nodes and cluster as the experiment object,we established the simultaneous channel estimation model in this paper,deduced the relationship of threshold with the signal noise rate(SNR),proposed the threshold adaptation-simultaneous orthogonal matching pursuit(TA-SOMP) algorithm for channel estimation,and accomplished the corresponding simulation experiments.The simulation results show that compared to the classical orthogonal matching pursuit(OMP) algorithm,the TA-SOMP algorithm has better performance of mean square error(MSE) and the received signal has lower bit error rate(BER).Under the same SNR,the TA-SOMP algorithm needs fewer pilots than OMP algorithm,which means the former can get higher band utilization rate.
出处 《信号处理》 CSCD 北大核心 2012年第6期778-784,共7页 Journal of Signal Processing
基金 国家自然科学基金(60971129 61071092) 国家重大基础研究计划973项目(2011CB302903) 南京邮电大学青蓝计划(NY210038) 东南大学移动通信国家重点实验室开放研究基金资助课题(课题编号:2011D04)
关键词 信道估计 压缩感知 分布式压缩感知 正交匹配追踪 Channel Estimation Compressive Sensing Distributed Compressed Sensing Orthogonal Matching Pursuit
  • 相关文献

参考文献23

  • 1Ozgur A. , Leveque O. and Tse D. N.C. " Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks," [J]. IEEE Trans on Information Theo- ry, Oct. 2007,53 (10) :3549-3572.
  • 2Mahmoud H. , Yucek T. and Arslan H," OFDM for cogni- tive radio: merits and challenges," [J]. IEEE Trans on Wireless Communications, April 2009,16 (2) :6-15.
  • 3Candes E, Romberg J and Tao T, "Robust uncertainty principles: exact signal reconstruction from highly incom- plete frequency information," [ J]. IEEE Trans on Infor-mation Theory,Sept. 2006,52(2) :489-509.
  • 4Donoho D L, "Compressed sensing," [ J ]. IEEE Trans on Information Theory,2006,52(4) : 1289-1306.
  • 5Taubock G. , Hlawatsch F. , Eiwen D. and Rauhut H, "Compressive Estimation of Doubly Selective Channels in Multicarrier Systems: Leakage Effects and Sparsity-En- hancing Processing," [ J ]. IEEE Journal of Selected Topics in Signal Processing, April 2010,4 ( 2 ) : 255-271.
  • 6Bajwa, W. U. , Haupt, J. , Sayeed A. M. , and Nowak R. ," Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels," [ J ]. Proceed- ings of the IEEE,June 2010,98 (6) : 1058-1076.
  • 7何雪云,宋荣方,周克琴.基于压缩感知的OFDM系统稀疏信道估计新方法研究[J].南京邮电大学学报(自然科学版),2010,30(2):60-65. 被引量:53
  • 8袁文文,郑宝玉,岳文静.基于压缩感知技术的双向中继信道估计[J].信号处理,2012,28(1):33-38. 被引量:6
  • 9Baron D, Wakin M B and Duarte M, "Distributed com- pressed sensing," [EB/OL]. http: //www. dsp. rice. edu/ drorb/pdf/DCS112005, pdf.
  • 10Ozdemir M. K. and Arslan. H. , "Channel estimation for wireless ofdm systems," [ J ]. IEEE Communications Surveys & Tutorials ,2007,9 (2) : 18-48.

二级参考文献106

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献767

同被引文献125

  • 1周四望,林亚平,张建明,欧阳竞成,卢新国.传感器网络中基于环模型的小波数据压缩算法[J].软件学报,2007,18(3):669-680. 被引量:41
  • 2苏晓星,李风华,简水生.浅海低频声场的水平纵向相关性[J].声学技术,2007,26(4):579-583. 被引量:13
  • 3黄海平,沙超,蒋凌云.无线传感器网络技术及其应用[M].北京:人民邮电出版社,2011.
  • 4TAUBOCK G, HLAWATSCH F, EIWEN D, et al. Compressive es- timation of doubly selective channels in multicarrier system: leakage effects and sparsity-enhancing processing[ J]. IEEE Joumal of Se- lected Topics in Signal Processing, 2010, 4(2):255 -271.
  • 5HE X Y, SONG R F, ZHU W P. Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM sys- tems [J]. Circuits, Systems and Signal Processing, 2012, 31(4): 1379 - 1395.
  • 6SHARP M, SCAGLIONE A. A useful performance metric for com- pressed channel sensing[ J]. IEEE Transactions on Signal Preeess- ing, 2011,59(6) : 2982 - 2988.
  • 7DO T T, GAN L, NGUGEN N H. Sparsity adaptive matching pur- suit algorithm for practical compressed sensing[ C]// Preeeedings of the 42nd Asilomar Conference on Signals Systems and Computers. Piscataway: IEEE, 2008:581 - 587.
  • 8甘伟,许录平,罗楠,等.一种自适应压缩感知重构算法[J].系统工程及电子技术,2011,33(9):1948-1953.
  • 9XIA P F, ZHOU S L, GIANNAKIS G B. Achieving the Welch bound with difference sets[ J]. IEEE Transactions on Information Theory, 2005, 51(5) : 1900 - 1907.
  • 10D. Malioutov, M. Cetion, and A. S. Willsky. A sparse signal reconstruction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Pro- cessing, 2005, 53 (8) : 3010-3022.

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部