期刊文献+

一种适用频谱检测技术的最小l_1范数改进算法

An Improved l_1 Norm Minimum Algorithm for Spectrum Detection
在线阅读 下载PDF
导出
摘要 压缩感知(compressed sensing)理论是近两年信号处理领域方兴未艾的一个热门研究方向,它的出现突破了奈奎斯特采样定理对信号频率的限制。最小l1范数法(即BP算法)是压缩感知中信号若干种重构方法中比较成熟的一种算法。文中在对已有的BP算法进行了研究后,提出了一种适用于噪声环境下的加权迭代l1算法,并将之应用于认知无线电的频谱感知中,经过MATLAB仿真的对比后,验证了改进之后的算法对提高含有高斯白噪声的信号重构的精确度有着更加精确的效果。 In recent years, compressed sensing theory is a hot research direction in signal processing field. It breaks through the limit of the Nyquist sampling frequency of signal. Minimum l1 norm method ( ie BP algorithm) is a mature reconstruction method in compressed sensing. This paper proposes a method which changes the noise limit condition from 12 norm to l1 norm and uses iterative weighted l1 norm. The method is applied in the spectrum sensing of cognitive radio. MATLAB simulation results show that the new meth- od reconstructed signal accurately in the AWGN channel.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2012年第3期5-9,15,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)(2011CB302903) 国家自然科学基金(60971129)资助项目
关键词 压缩感知 最小l1范数 信号重构 认知无线电 频谱感知 compressed sensing minimum lI norm signal reconstruction cognitive radio spectrum sensing
  • 相关文献

参考文献9

  • 1DONOHO D L. Compressed Sensing[ J]. IEEE Transactions on In- formation Theory,2006,52 (4) : 1289 - 1306.
  • 2CANDES E. Compressive Sampling [ C ]// Proceedings of the Inter- national Congress of Mathematicians. Madrid, Spain, 2006,3 : 1433 - 1452.
  • 3CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency infor- mation[ J ]. IEEE Transactions on Information Theory, 2006, 52 (2) :489 -509.
  • 4BARANIUK R. Compressive sensing [ J ]. IEEE Signal Processing Magazine,2007,24(4) :118 - 121.
  • 5CHEN S B,DONOHO D L,SAUNDERS M A. Atomic Decomposi- tion by Basis Pursuit [ J ]. SIAM Journal on Scientific Computing, 1998,20( 1 ) :33 -61.
  • 6DONOHO D L, ELAD M, TEMLYAKOV V. Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise [ J ]. IEEE Transactions on Information Theory ,2006,52( 1 ) :6 - 18.
  • 7CANDES E, WAKIN M, BOYD S. Enhancing sparsity by reweighted minimization [ J ]. Journal of Fourier Analysis and Applications, 2008,14(5/6) :877 -905.
  • 8芮国胜,王林,田文飚.一种基于基追踪压缩感知信号重构的改进算法[J].电子测量技术,2010,33(4):38-41. 被引量:24
  • 9CANDES E. Compressive sampling [ C ] // Proceedings of the Inter- national Congress of Mathematieians. 2006,3 : 1433 - 1452.

二级参考文献11

  • 1DONOHO D L.Compressed sensing[J].IEEE Trans.on Information Theory,2006,52(4):1289-1306.
  • 2CANDèS E.Compressive sampling[C].Proceedings of the International Congress of Mathematicians,Madrid,Spain,2006,3:1433-1452.
  • 3CANDèS E J,TAO T.Near optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans.Info.Theory.2006,52(12):5406-5425.
  • 4CANDèS E,ROMBERG J,TERENCE T.Robust uncertainty princi-ples:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.on Information Theory,2006,52(2):489-509.
  • 5CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 6DONOHO D L,TSAIG Y.Extensions of compressed sensing[J].Signal Processing.2006,86(3):533-548.
  • 7CANDèS E J,ROMBERG J.Practical signal recovery from random projections[OL].http://www.acm.caltech.edu/-emmanuel/papers/PracticalRecovery.pdf.
  • 8FIGUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J].Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,1(4):586-598.
  • 9BLOOMFIELD P,STEIGER W.Least Absolute Deviations:Theory,Applications,and Algorithms[M].Boston:Birkhauser,1983.
  • 10周宏潮.基于稀疏参数模型及参数先验的图像分辨率增强方法研究[D].长沙:国防科技大学,2005.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部