期刊文献+

基于BP神经网络的离心泵关死点功率预测 被引量:27

Power prediction for centrifugal pumps at shut off condition based on BP neural network
在线阅读 下载PDF
导出
摘要 离心泵关死点功率至今还不能通过理论计算求得。该文介绍了BP神经网络的结构和特点及其在离心泵性能预测领域的应用现状。基于BP神经网络建立了离心泵关死点功率的预测模型。给出了预测模型的输入模式,并应用试凑法确定了BP神经网络中间隐含层的数目。用46组数据该预测模型进行了训练并给出了神经网络权值和阈值,用3组数据该预测模型进行了仿真并对仿真结果进行了线性回归分析。研究结果表明:建立的离心泵关死点功率预测模型具有比较高的预测精度,其预测平均偏差为4%,可以应用于工程实践中离心泵关死点功率的理论求解。 At present, the power of centrifugal pumps at shut off condition can not be obtained by theory computation. The structure of the BP artificial neural network and its application situation in energy performance prediction of centrifugal pumps were introduced in detail. Based on BP artificial neural network, the characteristic prediction model is established to predict power of centrifugal pumps at shut off condition. The input mode of the BP network prediction model is presented and the number of middle layer is fixed by many tests. The characteristic data of 46 centrifugal pumps at shut off condition are used to train the network model, and the data of the other 3 centrifugal pumps are used to test the network model. The weight of each layer is also presented. The study fruits show that the prediction results of the model agree well with the experiment results. The average prediction discrepancy of the network is 4 percent, the minimum prediction discrepancy is 3.35 percent, and the maximal prediction discrepancy is 4.5 ! percent. The prediction precision of the BP network model can meet the engineering practical requirement.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第11期45-49,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(51109095) 江苏省自然科学基金(BK2010346) 江苏省教育厅项目(09KJD470002) 江苏大学高级人才科研启动基金(09JDG026) 江苏省研究生创新研究计划(CXLX11_0576)
关键词 离心泵 神经网络 预测 功率 关死点 centrifugal pumps, neural networks, forecasting, power, shut off condition
  • 相关文献

参考文献23

  • 1关醒凡.现代泵理论与设计[M].北京:宇航出版社,1995.
  • 2袁寿其,付强,朱荣生.核电站离心式上充泵多工况水力设计[J].排灌机械工程学报,2010,28(3):185-189. 被引量:23
  • 3Short T D, Oldach R. Solar powered water pumps: the past, the present-and the future[J]. Transactions of the ASME, 2003, 125(1): 76-82.
  • 4Bakelli Y, Arab A Hadj, Azoui Boubekeur. Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept [J]. Solar Energy, 2011, 85(2): 288-294.
  • 5Kala M, Steven F, Sadrul U. Solar Photovoltaic Water Pumping for Remote Locations[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 472-487.
  • 6郑诗程,苏建徽,沈玉粱,余世杰.具有TMPPT功能的数字式光伏水泵系统的设计[J].农业工程学报,2004,20(5):270-274. 被引量:11
  • 7Dyson G. A review of closed valve head prediction methods for centrifugal pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(4): 329-337.
  • 8Dyson G, Teixeira J. Investigation of closed valve operation using computational fluid dynamics[C]//Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado, USA, 2009.
  • 9Newton T M. Rotor-stator Interaction in Radial Flow Pumps and Fans at Shut-Off Conditions[D]. Newcastle: Newcastle University, 1998.
  • 10Frost T H, Nilsen E. Shut-off head of centrifugal pumps and fans[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1991, 205(3): 217-223.

二级参考文献76

共引文献183

同被引文献335

引证文献27

二级引证文献353

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部