期刊文献+

融合语素特征的中文褒贬词典构建 被引量:7

Construction of Chinese polarity lexicon by integration of morpheme features
在线阅读 下载PDF
导出
摘要 针对传统语素方法对于种子词语数量的依赖和传统图方法召回率较低的问题,提出一种将词语间语素关系融入到图模型中,并结合词语同义关系进行中文褒贬词典半监督构建的方法。首先利用语素模型计算词语间语素相似度;然后利用同义词林和双语词典资源,构建词语间同义关系;最后将二种关系结合,并利用标签传播(LP)算法进行词语的褒贬分类。实验结果表明,所提方法具有较高的准确率和召回率,微平均F1值最高可达92.8%;并降低了对种子词语数量的依赖,当种子词语数量仅为100时,微平均F1值依然可达到84.1%。除此之外,所提方法还具有快速收敛的特性。 Concerning the dependence on seed words amount of the traditional method based on morpheme,and the low recall rate of traditional graph-based method,the authors proposed a method which integrated the morpheme relationship of Chinese words into the graph model,and combined the synonymy of words to build Chinese polarity lexicon by a semi-supervised learning algorithm in a graph.Firstly,a morpheme model was used to weight the similarity of two Chinese words.Secondly,synonymous words and bilingual lexicon were used to build the synonymy of words.Finally,the final relation was acquired by integrating the two relations,and Label Propagation(LP) was used to run on the relation map to distinguish the polarity of the emotion words.The experimental results show that the proposed method can achieve high accuracy and recall rate,and MicroF1 can be as high as 92.8%.The dependence on seed words amount is reduced based on the fact that when the seed word amount is 100,MicroF1 can still be 84.1%.In addition,the proposed method has fast convergence.
作者 常晓龙 张晖
出处 《计算机应用》 CSCD 北大核心 2012年第7期2033-2037,共5页 journal of Computer Applications
关键词 极性词典 语素模型 同义关系 图模型 标签传播 polarity lexicon morpheme model synonymy relation graph model Label Propagation(LP)
  • 相关文献

参考文献18

  • 1XU GE, MENG XINFAN, WANG HOUFENG. Build Chinese emo- tion lexicons using a graph-based algorithm and multiple resources [ C] // Proceedings of the 23rd International Conference on Compu- tational Linguistics. Streudsburg, PA: Association for Computational Linguistics, 2010:1209 - 1217.
  • 2KIM S M, HOVY E. Identifying and analyzing judgment opinions [ C]// Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Associ- ation of Computational Linguistics. Streudsburg, PA: Association for Computational Linguistics, 2006:200-207.
  • 3KIM S M, HOVY E. Automatic detection of opinion bearing words and sentences [ C]// Proceedings of the Second International Joint Conference on Natural Language Processing. Jeju Island: [ s. n. ], 2005:61 -66.
  • 4HATZIVASSILOGLOU V, MCKEOWN K. Predicting the semantic orientation of adjectives [ C]// ACL-97: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics. Madrid, Spain: [ s. n. ], 1997:174 - 181.
  • 5VELIKOVICH L, BLAIR-GOLDENSOHN S, I-IANNAN K, et al. The viability of Web-derived polarity lexicons [ C]// Proceedings of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Lin- guistics, 2010:777-785.
  • 6路斌,万小军,杨建武,等.基于同义词词林的词汇褒贬计算[C]//中国计算技术与语言问题研究-第七届中文信息处理国际会议论文集.北京:电子工业出版社,2007:17-23.
  • 7KU L W, HUANG T H, CHEN H H. Using morphological and syn- tactic structures for Chinese opinion analysis [ C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro- cessing. Stroudsburg, PA: Association for Computational Linguis-tics, 2009:1260 - 1269.
  • 8KU L W, LO Y S, CHEN H H. Using polarity scores of words for sentence-level opinion extraction [ C]// Proceedings of NTCIR-6 Workshop Meeting. Tokyo, Japan:[s. n. ], 2007:316 -322.
  • 9TURNEY P, LITI'MAN M L. Measuring praise and criticism: Infer- ence of semantic orientation from association [ J]. ACM Transactions on Information Systems, 2003, 21(4): 315-346.
  • 10KIM S M, HOVY E. Determining the sentiment of opinions [ C]// Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Lin- guistics, 2004:1367 - 1373.

二级参考文献9

  • 1Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 2Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 3Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 4Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 5Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 6K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 7Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.
  • 8HowNet[R]. HowNet's Home Page. http://www. keenage.com.
  • 9刘群 李素建.基于《知网》的词汇语义相似度的计算[A]..第三届汉语词汇语义学研讨会[C].台北,2002..

共引文献328

同被引文献75

  • 1王细薇,樊兴华,赵军.一种基于特征扩展的中文短文本分类方法[J].计算机应用,2009,29(3):843-845. 被引量:36
  • 2张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 4林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 5Tsytsarau M, Palpanas T. Survey on mining subjective data on theWeb [J]. Data Mining and Knowledge Discovery,2012,24(3):478-514.
  • 6Taboada M, Brooke J B,Tofiloski M ’ et al. Lexicon-based methods forsentiment analysis [ j]. Association for Computational Linguis-tics, 2011,37(2) : 267-307.
  • 7Kim S M, Hovy E. Crystal: analyzing predictive opinions on the Web[C ] //Proc of Joint Conference on Empirical Methods in Natural Lan-guage Processing and Computational Natural Language Learning.2007: 1056-1064.
  • 8Tumey P, Littman M L. Measuring praise and criticism: inference ofsemantic orientation from association [ J ]. ACM Trans on Informa-tion Systems, 2003,21 (4) :315-346.
  • 9Li Fangtao, Pan S J, Jin Ou, et al. Cross-domain co-extraction of, sentiment and topic lexicons [ C ] //Proc of the 50th Annual Meetingof the Association for Computational Linguistics. 2012 : 410-419.
  • 10Liu Bin, Tan Chenhao, Cardie C, et al. Joint bilingual sentimentclassification with unlabeled parallel corpora [ C ] //Proc of the 49thAnnual Meeting of the Association for Computational Linguistics.2011: 320-330.

引证文献7

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部