期刊文献+

一致性规划中互斥常量合成方法研究 被引量:2

Invariant Synthesis for Conformant Planning
在线阅读 下载PDF
导出
摘要 为压缩一致性规划的状态空间,并加快一致性规划的求解速度,将常量引入到一致性规划中,定义一致性规划中的常量,形成新的知识表示"多值一致性规划任务",定义多值一致性规划动作模型,提出一致性规划常量合成方法,给出一致性规划常量合成算法.该方法利用常量的特性在所有初始世界状态和所有实例动作中猜测、验证常量.理论分析和实验结果表明该算法能合成正确的一致性规划常量,生成多值一致性规划任务.为说明一致性规划常量的应用效果,把生成的多值一致性规划任务与规划解重用启发式结合求一致性规划解,并与规划系统CFF进行对比实验.实验结果表明求解质量和效率较高. In order to compress the state space and accelerate the speed of eonformant planning, invariants are introduced into conformant planning, lnvariants of conformant planning are defined formally, and new knowledge representation "multi-valued conformant planning task" is given. The action model of multi-valued conformant planning is defined accordingly. An invariant synthesis method is proposed for conformant planning and a conformant invariant synthesis algorithm is specified. The synthesis method guesses candidates of invariants firstly. Then the synthesis method tests candidates among all initial world states and all actions according to the properties of conformant invariants. Some candidates are given up and some candidates are modified to form new candidates for testing again. Other candidates are proved to be invariants. Theoretical analysis and experimental results show that the algorithm can synthesize correct invariants and produce multi-value conformant planning tasks. For conformant planning, multi-valued conformant task can greatly compress the state space than Boolean codes used by conformant planning. In order to specify the application of the conformant invariants, the heuristics of reusing plan is combined with the multi-valued conformant tasks for solving the conformant tasks. The comparative experiments with planning system CFF are conducted for testing the efficiency and quality of the combination. Experimental results show that this combination is better than planning system CFF in some domains.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第6期1279-1287,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61133011 61170092 60973088 60873149)
关键词 智能规划 多值规划任务 一致性规划 常量合成 启发式应用 intelligent planning multi-valued planning task l conformant planning~ invariantsynthesis~ heuristics application
  • 相关文献

参考文献13

  • 1蔡敦波,殷明浩,谷文祥,孙吉贵,刘科成.基于延迟部分推理的快速前向规划系统[J].计算机学报,2008,31(5):793-802. 被引量:7
  • 2杨宇鹏,欧阳丹彤,蔡敦波,吕帅.基于Conformant Fast-Forward规划系统的析取目标处理方法[J].计算机研究与发展,2008,45(12):2120-2128. 被引量:1
  • 3Palacios H, Geffner H. Compiling uncertainty away., solving conformant planning problems using a classical planner (sometimes) [C] //Proc of the 21st National Conf on Artificial Intelligence. Menlo Park, California: AAA1 Press, 2006:900-905.
  • 4Palacios H, Geffner H. From conformant into classical planning: efficient translations that may be complete too [C] //Proc of the 17th Int Conf on Automated Planning and Scheduling. Menlo Park, California: AAAI Press, 2007: 264-271.
  • 5Bertoli P, Cimatti A. Improving heuristics for planning as search in belief space [C] //Proc of the 6th Int Conf on AI Planning & Scheduling. Menlo Park, California: AAAI Press, 2002: 143-152.
  • 6Maria Fox, Derek Long. The automatic inference of stateinvariants in TIM[J]. Journal of Artificial Intelligence Research. 1998, 9:367-421.
  • 7Rintanen J. An iterative algorithm for synthesizing invariants [C]//Proc of the 17th National Conf on Artificial Intelligence. Menlo Park, California: AAAI Press, 2000: 806-811.
  • 8Helmert M. The fast downward planning system[J].Journal of Artificial Intelligence Research, 2006, 26: 191- 246.
  • 9Helmert M. Solving planning tasks in theory and practice [D]. Freiburg, Germany: Freiburg University, 2006.
  • 10Cai Dunbo, Sun Jigui, Yin Minghao. Conformant planning heuristics based on plan reuse in belief states [C] //Proc of the 23rd AAAI Conf on Artificial Intelligence. Menlo Park, California: AAAI Press, 2008:1780-1781.

二级参考文献43

  • 1吴康恒,姜云飞.基于模型检测的领域约束规划[J].软件学报,2004,15(11):1629-1640. 被引量:17
  • 2朱曼菲,姜云飞.CEFF——一种基于组件的条件效果处理方法[J].计算机学报,2004,27(12):1601-1611. 被引量:1
  • 3赖志锋,姜云飞.智能规划中基于遗传算法的动作模型学习[J].计算机学报,2007,30(6):945-953. 被引量:6
  • 4Estlin T, Gaines D, Chouinard C, et al. Increased Mars Rover autonomy using AI planning, scheduling and execution [C]//Proc of IEEE Int Conf on Robotics and Automation. Piscataway, NJ: IEEE, 2007.
  • 5Weld D S. Recent advances in AI planning [J]. AI Magazine, 1999, 20(2): 93-123.
  • 6Smith David E, Weld D S. Conformant graphplan [C]//Proc of the 15th National Conf on AI. Menlo Park, California: AAAI, 1998:889-896.
  • 7Hoffmann J, Brafman R. Conformant planning via heuristic forward search: A new approach [J]. Artificial Intelligence, 2006, 170(6/7): 507-541.
  • 8Brafman R, Hoffmann J. Conformant planning via heuristic forward search: A new approach [C] //Proc of the 14th Int Conf on Automated Planning and Scheduling. Menlo Park, California: AAAI, 2004:355-364.
  • 9Bonet Blai, Geffner Hector. GPT: A tool for planning with uncertainty and partial information [C] //Proc of IJCAI-01 Workshop on Planning with Uncertainty and Incomplete Information. San Francisco: Morgan Kaufmann, 2001:82- 87.
  • 10Bryce D, Kambhampati S, Smith D E. Planning in belief space with a labeled uncertainty graph [C] //Proc of AAAI'04 Workshop on Learning and Planning in Markov Decision Processes. Menlo Park, California: AAAI, 2004.

共引文献6

同被引文献41

  • 1张汝波,顾国昌,杨歌,郭轶尊.具有学习能力的智能机器人体系结构研究[J].华中科技大学学报(自然科学版),2004,32(S1):58-60. 被引量:4
  • 2徐玉如,肖坤.智能海洋机器人技术进展[J].自动化学报,2007,33(5):518-521. 被引量:53
  • 3Zhang Y W, Robert S, John P, et al. Design and tests of an adaptive triggering method for capturing peak samples in a thin phytoplankton layer by an AUV. IEEE Journal of Oceanic Engi- neering,2010,35(4) :7854796.
  • 4Gabriele F, Michael V, Dana R. A novel trigger- based method for hydrothermal vents prospecting using an autonomous underwater robot. Autonomous Robot, 2010,29 ( 1 ) : 67 -83.
  • 5Eickstedt D P, Scott R. The backseat control ar chitecture for autonomous robotic vehicles: A case study with the Iver2 AUV. OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future : Global and Local Challenges, 2009 : 1 - 8.
  • 6Zhang L,Jiang D P,Zhao ] X. The basic control system of an ocean exploration AUV. Applied Mechanics and Materials, 2013, 411 - 414: 1757-1761.
  • 7Conor M G, Frederic P, Kanna R, et al. A deliberative architecture for AUV control. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation. New York:IEEE Press,2008:1049-1054.
  • 8李彩虹,李贻斌,宋勇.一种移动机器人混合式体系结构.中南大学学报(自然科学版),2007,38(z1):445-449.
  • 9Zhang R, Tong H, Shi C. A control architecture for mission re-planning and plan repair of AUV. Applied Mechanics and Materials, 2014, 462- 463-794-797.
  • 10Brad R, Marc R, John T, et al. Applications of multi-objective evolutionary algorithms to air operations mission planning. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation. New York : ACM, 2008 : 1879 - 1884.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部