期刊文献+

电力系统共振模式下传统特征值灵敏度分析失效问题 被引量:4

Research on Invalidation of Traditional Eigenvalue Sensitivity Analysis for Resonant Modes in Power Systems
原文传递
导出
摘要 特征值灵敏度在电力系统小干扰稳定性分析和控制器设计中应用广泛。基于特征值摄动理论,指出在共振模式和接近共振模式下,传统的特征值1阶、2阶灵敏度计算公式与摄动表达式均可能失效。针对这一问题,提出了一种特征值关于系统参数变化的快速重分析算法,从而可以有效分析系统参数小范围变化时共振模式和接近共振模式特征值的变化情况。IEEE 9节点系统和IEEE 39节点系统的分析结果验证了该算法的有效性。 In power systems, eigenvalue sensitivities are widely applied in both small signal stability analysis and controller design. Based on the perturbation theory of eigenvalue, it has been pointed out that the traditional first-order/second-order eigenvalue sensitivity formula and their associated perturbation expressions would be invalid under resonant modes and near-resonant modes. In allusion to this problem, a fast eigenvalues recalculation algorithm related to system parameter variation is proposed. Using the proposed algorithm, the variation of the eigenvalues for the resonant modes and the near-resonant modes can be effectively estimated, when the power system parameters are varied. The effectiveness of the proposed algorithm is verified by simulation results of 1EEE-9 bus power system and IEEE 39-bus power system.
出处 《电网技术》 EI CSCD 北大核心 2012年第6期108-115,共8页 Power System Technology
基金 国家863高技术基金项目(2011AA05A119)~~
关键词 电力系统 小干扰稳定 低频振荡 共振 特征值 灵敏度 特征值摄动分析 power system small signal stability lowfrequency oscillation resonance eigenvalue sensitivity perturbation analysis of eigenvalue
  • 相关文献

参考文献25

  • 1朱方,赵红光,刘增煌,寇惠珍.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7. 被引量:298
  • 2顾丽鸿,周孝信,严剑峰,李芳.特高压联网区域实时小干扰稳定分析策略[J].中国电机工程学报,2010,30(13):1-7. 被引量:26
  • 3Huang D, Shu Y, Ruan J, et al. Ultra high voltage transmission in China : developments , current status and future prospects [J]. Proceedings ofthelEEE, 2009, 97(3): 555-583.
  • 4Van N J E, Brasch F M, Landgren G L, et al. Analytical investigation of dynamic instability occuring at powerton station[J]. IEEE Trans on PowerApparatusandSystems, 1980, PAS-99(4): 1386-1395.
  • 5Klein M, Rogers G J, Moorty S, et al. Analytical investigation of factors influencing power system stabilizers performance[J]. IEEE Trans on Energy Conversion, 1992, 7(3): 382-390.
  • 6Dobson I, Zhang J, Greene S, et al. Is strong modal resonance a precursor to power system oscillations[J]. IEEE Trans on Circuits and Systems h Fundamental Theory and Applications, 2001, 48(3): 340-349.
  • 7Dobson I, Barocio E. Perturbations of weakly resonant power system electromechanical modes[J]. IEEE Trans on Power Systems, 2005, 20(1): 330-337.
  • 8Nomikos B M, Voumas C D. Modal interaction and PSS design[C]//IEEEPowerTechProceedings. Porto, Portugal, IEEE: 2001 : 1-6.
  • 9赵书强,刘璐.密集型固有振模电力系统PSS失效问题研究[C]//中国高等学校电力系统及其自动化专业第25届学术年会.长沙:长沙理工大学,2009:1-3.
  • 10彭谦,马晨光,杨雪梅,范滢.线性模态分析中的参与因子与贡献因子[J].电网技术,2010,34(2):92-96. 被引量:24

二级参考文献133

共引文献414

同被引文献82

引证文献4

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部