摘要
特征值灵敏度在电力系统小干扰稳定性分析和控制器设计中应用广泛。基于特征值摄动理论,指出在共振模式和接近共振模式下,传统的特征值1阶、2阶灵敏度计算公式与摄动表达式均可能失效。针对这一问题,提出了一种特征值关于系统参数变化的快速重分析算法,从而可以有效分析系统参数小范围变化时共振模式和接近共振模式特征值的变化情况。IEEE 9节点系统和IEEE 39节点系统的分析结果验证了该算法的有效性。
In power systems, eigenvalue sensitivities are widely applied in both small signal stability analysis and controller design. Based on the perturbation theory of eigenvalue, it has been pointed out that the traditional first-order/second-order eigenvalue sensitivity formula and their associated perturbation expressions would be invalid under resonant modes and near-resonant modes. In allusion to this problem, a fast eigenvalues recalculation algorithm related to system parameter variation is proposed. Using the proposed algorithm, the variation of the eigenvalues for the resonant modes and the near-resonant modes can be effectively estimated, when the power system parameters are varied. The effectiveness of the proposed algorithm is verified by simulation results of 1EEE-9 bus power system and IEEE 39-bus power system.
出处
《电网技术》
EI
CSCD
北大核心
2012年第6期108-115,共8页
Power System Technology
基金
国家863高技术基金项目(2011AA05A119)~~
关键词
电力系统
小干扰稳定
低频振荡
共振
特征值
灵敏度
特征值摄动分析
power system
small signal stability
lowfrequency oscillation
resonance
eigenvalue sensitivity
perturbation analysis of eigenvalue