期刊文献+

基于网格密度的带有层次因子的聚类算法 被引量:1

Clustering Algorithm Based on Grid Density with Level Factor
在线阅读 下载PDF
导出
摘要 基于网格和密度的聚类算法是一类很重要的聚类算法,但由于采用单调性搜索的方法,使得聚类结果并不十分理想,因此文中在GDD算法的基础上,提出了一种基于网格和密度的带有层次因子与距离因子的GDLD算法。GDLD算法将数据空间按要求划分成网格结构并计算网格密度,构建新的跃迁函数以达到形成有效聚类的目的。实验证明,该算法不仅能够发现任意形状的簇,而且使效率得到了很大的提高。同时层次因子既体现了簇的密度水平,也反映了簇密度的变化过程并使得算法参数更容易确定。 Clustering algorithm based on grid and density is a very important kind of clustering algorithm, but because of using monotonicity search method, it can' t form an effective cluster. Therefore, proposed a new clustering algorithm GDLD with hierarchy factor and distance factor based on GDD algorithm. In GDLD algorithm, data space is divided into grid structure according to the requirements and calculated the mesh density, a new transition function is constructed to form an effective cluster. Experiments show that GDLD algorithm not only can discover clusters of arbitrary shape,but also make the efficiency greatly improved. Each cluster' s density is reflected better and the changing process of the density is also reflected because of level factors, besides, the algorithm parameters are easier to define.
作者 贾佳
出处 《计算机技术与发展》 2012年第6期10-13,18,共5页 Computer Technology and Development
基金 天津市哲学社会科学研究规划资助项目(TJJX10-1-820)
关键词 聚类分析 层次因子 距离因子 clustering analysis level factor distance factor
  • 相关文献

参考文献10

  • 1Han J,Kamber M.数据挖掘概念与技术[M].范明,译.北京:机械工业出版社,2007:32-59.
  • 2韩家炜.数据挖掘:概念与技术[M].北京:机械工业出版社,2000.
  • 3方杰,张结魁,周军.基于有向带权图的页面聚类算法研究[J].计算机技术与发展,2009,19(9):49-53. 被引量:2
  • 4赵慧,刘希玉,崔海青.网格聚类算法[J].计算机技术与发展,2010,20(9):83-85. 被引量:30
  • 5周水庚,周傲英,曹晶,胡运发.一种基于密度的快速聚类算法[J].计算机研究与发展,2000,37(11):1287-1292. 被引量:92
  • 6戴维迪,张璐.基于网格密度和距离信息特征的聚类算法[J].华南理工学报,2009(4):18-23.
  • 7Dai Weidi, Hou Yuexian, He Pitian. A Clustering Algorithm Based on Building a Density-tree[ C]//Proc. of the 4th Int' 1 Conf. on Machine Learning and Cybernetics. Guangzhou : [ s.n. ],2005:18-21.
  • 8Blake C L, Merz C J. UCI machine learning repository of ma- chine learning databases [ EB/OL]. 1998. http://www, ics. uci. edu/~ mleam/MLSummary, html.
  • 9Elder J, Pregibon D. A statistical perspective on knowledge discovery in database[ M]//Advances in Knowledge Discover- y and Data Mining. [s. 1. ] :AAAI/MIT Press,1996:83-115.
  • 10Meila M. Comparing Clusterings [ R/OL ]. 2005. http ://www. stat. washington, edu/www/research/reports/2002.

二级参考文献37

  • 1单世民,邓贵仕,何英昊.一种基于网格和密度的微粒群混合聚类算法[J].计算机科学,2006,33(11):164-165. 被引量:3
  • 2刘敏娟,柴玉梅,张西芝.基于相似度的网格聚类算法[J].计算机工程与应用,2007,43(7):198-201. 被引量:12
  • 3孙玉芬,卢炎生.一种基于网格方法的高维数据流子空间聚类算法[J].计算机科学,2007,34(4):199-203. 被引量:8
  • 4Chen M S, Park J S, Yu P S. Data mining for path traversalpattems in a Web environment[J]. In: Proc of the 16th Int'l Conf on Distributed Computing Systems. Hong Kong: [s.n. ], 1996:385-392.
  • 5孙吉贵,刘杰,赵连宇.聚类算法研究[J].Journal of Software,2008,19(1):48-61.
  • 6Ester M, Kriegal H P, Sander J. A density- based algorithm for discovering dusters in large spatial databases with noise[ C]// In: Simoudis, Evangelos, Han Jia - wei, Fayyad U M. KDD' 96 Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. [ s. l. ] : AAAI Press, 1996.
  • 7韩家炜.数据挖掘--概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.
  • 8Jain A K,Murty M N,Flynn P J.Data Clustering:A Review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 9曾蒙福.基于自适应网格的聚类算法及在信息提取中的应用研究[D].福州:福州大学,2005.
  • 10Wang W,Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]∥In:Proceedings of the 23rd VLDB Conference.Athens,Greece:[s.n.],1997:186-195.

共引文献149

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部