期刊文献+

New Upper Bounds on Linear Coloring of Planar Graphs 被引量:1

New Upper Bounds on Linear Coloring of Planar Graphs
原文传递
导出
摘要 A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree A has (1) lc(G) ≤ △ + 21 if △ ≥ 9; (2) lc(G) ≤[△/2]+ 7 if g≥5; (3) lc(G) ≤ [△/2]+2ifg≥7and△ ≥7. A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree A has (1) lc(G) ≤ △ + 21 if △ ≥ 9; (2) lc(G) ≤[△/2]+ 7 if g≥5; (3) lc(G) ≤ [△/2]+2ifg≥7and△ ≥7.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第6期1187-1196,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 61070230, 10971121 and 61103199) NSFSP of China (Grant No. ZR2009AM009)
关键词 Linear coloring planar graph GIRTH Linear coloring, planar graph, girth
  • 相关文献

参考文献1

二级参考文献5

  • 1Branko Grünbaum.Acyclic colorings of planar graphs[J].Israel Journal of Mathematics.1973(4)
  • 2Raspaud A,Wang W.Linear coloring of planar graphs with large girth[].Discrete Mathematics.
  • 3Raphael Yuster.Linear coloring of graphs[].Discrete Mathematics.1998
  • 4Grünbaum,B.Acyclic colorings of planar graphs[].Israel Journal of Mathematics.1973
  • 5Esperet L,Montassier M,Raspaud A.Linear choosability of graphs[].Discrete Mathematics.2008

共引文献3

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部