期刊文献+

SD振子的设计及非线性特性实验研究初探 被引量:7

THE PRELIMINARY INVESTIGATION ON DESIGN AND EXPERIMENTAL RESEARCH OF NONLINEAR CHARACTERISTICS OF SD OSCILLATOR
在线阅读 下载PDF
导出
摘要 具有光滑与不连续转迁特征的SD振子发现和提出以来,引起了广泛关注.基于双稳系统大位移特征的测量法困难,SD振子的实验研究还未见报道.该文提出并设计了具有SD振子系统光滑特征的非线性实验装置,用实验的方法揭示由几何关系产生的强非线性系统的非线性动力学行为.设计的非线性实验装置基本振动参数均有良好的可调性和可测量性,对SD振子在不同频率及幅值的简谐激励作用下的非线性动力学响应进行了实验研究.为克服大位移测量难题,研究采用高速摄像机采集振子振动视频信号并进行分析.结果表明,SD振子系统在一定的参数条件下会产生周期振动、周期5振动及混沌运动等复杂非线性动力学现象,在相同实验参数条件下进行了数值仿真,仿真结果与实验结果一致. Since the discovery of SD oscillator in 2006, which allows the transition from smooth to discontmuous dynamics of strongly geometric nonlinearity, a variety of significant phenomena have been explored through theoretical research. However, there has no report in literature about the experimental research due to the barrier of large displacement associated with bistability. Here in this paper, we propose an experimental rig of SD oscillator, which is smooth at the first stage, to investigate the nonlinear dynamic responses experimentally under the harmonic excitation with different excitation frequencies and amplitudes. Vibration parameters existed in the rig are measurable and adjustable. Vibration signals are collected by a high speed camera to overcome the conventional barrier. The experimental results presented in this paper showed the excellent agreement with the analytical results, periodic vibration, period-5 solution and chaotic phenomena under the chosen certain parameters.
出处 《力学学报》 EI CSCD 北大核心 2012年第3期584-590,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10872136,11172183,11072065,11002093)~~
关键词 SD振子 非线性实验装置 实验混沌 实验参数识别 SD oscillator, nonlinear experiment rig, experimental chaos, experimental parameter recognition
  • 相关文献

参考文献8

  • 1Filippov AF. Differential Equations with Discontinuous Right-hand Sides. The Netherlands: Kluwer Academic Publishers, 1988.
  • 2Kunze M. Non-smooth Dynamical Systems. New York: Springer-Verlag, 2000.
  • 3Shaw SW, Holmes PJ. A periodically forced piecewise lin- ear oscillator. Sound Vib, 1983, 90(1): 129-155.
  • 4Cao Q J, Wiercigroch M, Pavlovskaia EE, et al. Archetypal oscillator for smooth and discontinuous dynamics. Phys Rev E, 2006, 74: 046218(1-5).
  • 5Cao Q J, Wiercigroch M, Pavlovskaia EE, et al. Piece- wise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Phil Trans R Sac A, 2008, 1865(366): 635-652.
  • 6Cao Q J, Wiercigroch M, Pavlovskaia EE, et al. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. International Journal of Nonlin- ear Mechanics, 2008, 43:462-473.
  • 7Cao Q J, Xiong YP, Wiercigroch M. Resonances behavior of SD oscillator at the discontinuous phases. Journal of Applied Analysis and ComputatiOn, 2011, 1:183-191.
  • 8Tian RL, Cao Q J, Yang SP. The codimension-two bifur- cation for the recent proposed SD oscillator. Nonlinear Dynarnics, 2010, 59:19-27.

同被引文献52

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部