期刊文献+

快慢耦合振子的张驰簇发及其非光滑分岔机制 被引量:5

RELAXATION BURSTING OF A FAST-SLOW COUPLED OSCILLATOR AS WELL AS THE MECHANISM OF NON-SMOOTH BIFURCATION
在线阅读 下载PDF
导出
摘要 通过引入适当的参数值,得到了两时间尺度下的快慢耦合振子,分析了耦合系统及子系统的平衡点及其性质,进而利用微分包含理论,探讨了非光滑分界面上的奇异性,指出在适当的参数条件下,系统轨迹在穿越分界面时会产生由Hopf分岔和Fold分岔组合的非常规分岔.给出了不同参数条件下的周期簇发行为,分析了簇发过程的振荡特性,指出激发态的频率取决于快子系统在非光滑分界面上的Hopf分岔频率,而慢子系统的固有频率影响了簇发行为的振荡周期,并进一步揭示了由非光滑分岔引起的不同周期簇发的分岔机制. By introducing suitable values of the parameters, a fast-slow coupled oscillator has been obtained. Under the analysis of the equilibrium points as well as the characteristics of the coupled system and the subsystems, combining the theory of Clarke differential inclusions, the singularities on the non-smooth boundaries are explored, which reveals that the non-conventional bifurcation composed of Hopf bifurcation and Fold bifurcation may occur when the trajectory passes across the boundary for suitable parameters. Different types of burst- ing phenomena associated with the corresponding parameters conditions have been obtained, the oscillating characteristics of which is discussed in details. It is pointed out that the frequency of the spiking in bursters may depend on the frequency related to Hopf bifurcation of the fast subsystem on the non-smooth boundary, while the natural frequency of the slow subsystem may influence the oscillating period of the bursters. The bifurcation mechanism of the different periodic bursters caused by the non-smooth bifurcation are presented in the end.
出处 《力学学报》 EI CSCD 北大核心 2012年第3期576-583,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10872080) 江苏大学高级人才基金(10JDG144)资助项目~~
关键词 非光滑 簇发 分岔 耦合 快慢系统 non-smooth, bursting, bifurcation, coupling, fast-slow system
  • 相关文献

参考文献15

  • 1Chiba H. Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points. J Differential Equations, 2011, 250:112-160.
  • 2Mease KD. Multiple time-scales in nonlinear flight mechanics: diagnosis and modeling. Appl Math Cornput, 2005, 164: 627- 648.
  • 3Wang HX, Wang QY, Lu QS. Bursting oscillations, bifurca- tion and synchronization in neuronal systems. Chaos Solitons Fract, 2011, 44:667-675.
  • 4Rinzel J. Bursting oscillation in an excitable membrance model. In: Sleeman B D, Jarvis R J, eds. Ordinary and Partial Differential Equations. Berlin: Springer-Verlag, 1985. 304-316.
  • 5Lashina EA, Chumakova NA, Chumakov GA, et al. Chaotic dynamics in the three-variable kinetic model of CO oxidation on platinum group metals. Chem Eng J, 2009, 154:82-87.
  • 6Jia Z, Leimkuhler B. A parallel multiple time-scale reversible integrator for dynamics simulation. Future Generation Comp Syst, 2003, 19:415-424.
  • 7刘永强,雷文,吴捷,严正,倪以信,吴复立.多时间尺度电力系统的模型降阶及稳定性分析(二)电力系统的降阶与中长期失稳[J].电力系统自动化,2003,27(2):45-51. 被引量:20
  • 8Harvey E, Kirk V, Wechselberger M, et al. Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. J Nonli Sci, 2011, 21:639-683.
  • 9Both R, Finger W, Chaplain RA. Model predictions of the ionic mechanisms underlying the beating and bursting pacemaker characteristics of molluscan neurons. Biol Cybernetics, 1976, 23:1-11.
  • 10Lu QS, Yang ZQ, Duan LX, et al. Dynamics and transitions of firing patterns in deterministic and stochastic neuronal sys- tems. Chaos Solitons pract, 2009, 40:577-597.

二级参考文献27

共引文献39

同被引文献26

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部