期刊文献+

基于多样本的多核Fisher判别分析研究 被引量:3

Multi-kernel Fisher discriminant analysis based on diversity sample
在线阅读 下载PDF
导出
摘要 多核Fisher判别分析法是一种有效的非线性判别分析法,对其涉及的参数利用遗传算法进行确定是一个有效的途径。针对训练样本较多时遗传算法搜索时间较长的问题,提出一种基于多样本的多核Fisher算法。其做法是将大的训练集拆分成若干个小样本集,依次求得投影映射,并利用"投票策略"来判别待测样本。在人脸识别上的实验表明,基于多样本的多核Fisher算法可以在不降低分类正确率的前提下,提高算法的运算速度。 The multiple kernel Fisher discriminant analysis method is an effective nonlinear algorithm. To determine the related parameters by genetic algorithm is an effective way. The multiple kernel Fisher algorithm based on the diversity samples is presented in this paper to solve the problem that the original algorithm has to spend long time to search when more training samples are adopted. Its approach is that the original training set is splited into a number of small sample sets, which in turn calculate projection mapping by using " voting strategy" discrimination for the samples. The experiments for face recognition show that the multiple kernel Fisher algorithm based on the diversity samples can improve the computing speed without reduction of classification correct rate.
作者 王昕 范九伦
出处 《现代电子技术》 2012年第11期73-76,共4页 Modern Electronics Technique
关键词 核方法 多样本 遗传算法 人脸识别 kernel method diversity sample genetic algorithm face recognition
  • 相关文献

参考文献13

二级参考文献73

共引文献211

同被引文献65

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部