摘要
针对船体零件的排样问题,开发了基于智能算法的板材套料优化排样系统。该系统采用粒子群算法,并将免疫记忆和浓度机制引入算法提高了零件的排序优化速度。通过零件图形信息数据库管理模块和排样解码算法,实现图形的输入和编码、定位排放和正交靠接及自动计算生成最优排样结果。排样实例表明了该系统具有良好界面和人机交互功能,且有效提高了排样自动化程度和材料利用率。
A novel intelligent nesting system is developed to solve hull parts nesting problem,which using particle swarm optimization(PSO) combines with immune memory and concentration mechanism to increase optimizing speed.With nesting parts information database module and decode algorithm,the system can automatically realized part graphics input and coding,orthogonal collision and automatic layout output.Examples of results show that the system has good user interface and interactive features,with its effectiveness and layout automation being fairly proved in practice.
出处
《船舶工程》
CSCD
北大核心
2012年第2期61-64,共4页
Ship Engineering
基金
安徽高校省级科学研究项目(KJ2011B015)
安徽工程大学科研启动基金项目(S01023)
关键词
船舶零件
粒子群算法
排样优化
系统设计
hull parts
particle swarm optimization
nesting optimization
system design