期刊文献+

带有初态学习的指数变增益迭代学习控制 被引量:4

Iterative learning control of variable index gain with initial state study
在线阅读 下载PDF
导出
摘要 针对一类非线性时变系统在有限时间区间上的轨迹跟踪问题,提出一种新的迭代学习控制算法,该算法对系统的控制输入和初始状态同时采用闭环指数变增益迭代学习律。基于算子理论,对具有任意初始状态的系统,在该迭代学习律作用下的收敛性进行严格证明,同时给出该迭代学习算法收敛的谱半径形式的充分条件。该算法与固定增益的迭代学习控制相比较,不仅加快了收敛速度,而且还解决了指数变增益迭代学习控制要求初始状态严格重复的问题。仿真结果表明了该算法的有效性。 A new learning control algorithm is presented aiming at the trajectory tracking problem realized within a limited time region for a class of nonlinear time-varying systems.The new algorithm simultaneously adopts close-loop iterative learning rule with time-varying exponential gain for both control input and initial state of systems.Using the operator theory,the convergence of systems with any initial states is strictly proven under the operation of the iterative rule.Meanwhile,a sufficient convergence condition in the spectral radius form of the learning algorithm is provided.Compared with iterative learning control with the fixed learning gain,the proposed algorithm can not only significantly enhance the convergent speed but also solve the problem that the iterative learning control with time-varying exponential gain needs the rigid repetition of initial state.Simulation results illustrate the effectiveness of the proposed algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第4期773-777,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61100103)资助课题
关键词 初态学习 迭代学习控制 非线性系统 指数变增益 state study iterative learning control nonlinear system time-varying exponential gain
  • 相关文献

参考文献10

二级参考文献105

共引文献97

同被引文献37

  • 1詹炜.迭代学习控制的指数变增益加速学习算法及其在机器人控制上的应用[J].微计算机应用,2007,28(7):678-681. 被引量:4
  • 2Ding X, Guo L, Jeinsch T. A characterization of parity space and its application to robust fault detection[J]. IEEE Trans. on Automatic Control, 1999, 44(2) :337 - 343.
  • 3Zhong M Y, Ye H, Ding S X, et al. Observer-based fast rate fault detection for a class of multirate sampled-data systems[J]. IEEE Trans. on Automatic Control, 2007, 52(3) : 520 - 525.
  • 4Vemuri A T. Sensor bias fault diagnosis in a class of nonlinear systems[J]. IEEE Trans. on Automatic Control, 2001, 46(6) : 949 - 954.
  • 5Zhang X D, Parisini T, Polycarpou M M. Sensor bias fault iso- lation in a class of nonlinear systems[J]. IEEE Trans. on Auto- matic Control, 2005, 50(3) :370 - 376.
  • 6Arimoto S, Kawamura S, Miyazaki F. Bettering operation of ro- bots by leaming[J]. Journal of Robotic Systems, 1984,1 (2):123 - 140.
  • 7Bristow D A, Tharayil M, Alleyne A G. A survey of iterative learning control[J]. IEEE Control Systems Magazine, 2006, 26(3) :96 - 114.
  • 8Xu J X, Xo J. A new fuzzy logic learning control scheme for re- petitive trajectory tracking problems[J]. Fuzzy Sets and Sys- tems, 2003, 133(1): 57-75.
  • 9Cao W J, Xu J X. On functional approximation of the equiva- lent control using learning variable structure control[J]. IEEE Trans. on Automatic Control, 2002, 47(5):824 - 830.
  • 10Xu J X, Cao W J. Learning variable structure control approa- ches for repeatable tracking control tasks [J]. Automatica, 2001,37(7) :997 - 1006.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部