期刊文献+

基于纤维纵向显微图像的棉/亚麻单纤维识别 被引量:10

Single fiber identification of cotton/flax fabric based on longitudinal view of microscopic fiber images
在线阅读 下载PDF
导出
摘要 针对棉/亚麻混纺织物,基于其单纤维纵向显微图像(纤维切段的长度约为0.5 mm),研究了纤维的自动识别方法。检测纤维时,先对纤维图像进行去背景处理,而后运用形态学闭运算和背景区域生长相结合的方法获得纤维的目标区域,对图片中出现的玻璃划痕、干扰杂物等进行了较好的滤除。由纤维骨架垂直方向上的区域图、二值图和细化图得到它们的垂直积分投影序列,并提取这3条序列各自的变异系数CV值和平均值共计6个参数。将这6个参数作为棉/亚麻纤维的特征参数,训练最小二乘支持向量机分类器,对测试集的测试结果表明该分类器对棉/亚麻短纤维的识别正确率平均为93.3%。 Aiming at cotton/flax blended fabrics,a new automatic identification method based on the longitudinal view of microscopic fiber images is proposed,in which the length of fiber about 0.5 mm is used for image capture.For fiber detection,the background of fiber image is removed firstly,then fiber areas are detected by a method combining morphological close operation and background regional growth,and the glass scratches and other sundries in the images are filtered as well.Based on the region image,binary image and refining image of binary image perpendicular to the fiber skeleton,their vertical integral projection series are captured,and each coefficient variation(CV value) and mean value of these three series are extracted and used as the texture parameters of cotton/flax blended fabric to train the least square support vector machine classifier.The experiment results show that the mean identification accuracy of cotton and flax fibers is 93.3%.
出处 《纺织学报》 EI CAS CSCD 北大核心 2012年第4期12-18,共7页 Journal of Textile Research
关键词 棉纤维 亚麻纤维 纵向切段 混纺比 检测 图像识别 特征提取 支持向量机 cotton fiber flax fiber longitudinal view blending ratio detection image recognition feature extraction support vector machine
  • 相关文献

参考文献5

二级参考文献22

  • 1李志忠,吴红玲.纤维素酶处理Lyocell纤维原纤化的研究[J].针织工业,2006(11):42-45. 被引量:4
  • 2李琨,郑庆晖,廖冬学.基于梯度特征的图像自动分割方法[J].宇航学报,2006,27(6):1288-1292. 被引量:10
  • 3温海永,杨西君.天丝纯纺与混纺纱线工艺[J].纺织科技进展,2007(1):44-45. 被引量:6
  • 4孙雪梅,苏菲,蔡安妮.人脸识别中光照补偿参数及必要性的判定方法[J].计算机应用研究,2007,24(7):306-308. 被引量:1
  • 5PARIKSHIT Goswami.Dyeing behaviour of Lyocell hbric:effect of fibrillation[J].Coloration Technology,2007(6):378-393.
  • 6Zhao W, Chellappa R, Phillips P J, et al.Face rocognition: A literature survey[J].ACM Computing Survey, 2003,35 (4) : 399-458.
  • 7Shan D, Rabab W.Wavelet-based illumination normalization for face recognition[C]//IEEE International Conference on Image Processing, 2005 : 954-957.
  • 8Vishwakarma V P, Pandey S, Gupta M N.A novel approach for face recognition using DCT coefficients re-scaling for illumination normalization[C]//International Conference on Computational Intelligence and Security Workshops,2007.
  • 9Zhang L, Samaras D.Face recognition under variable lighting using harmonic image exemplars[C]/flEEE Conf on Computer Vision and Pattern Recognition, 2003:19-25.
  • 10Adini Y, Moses Y, Ullman S.Face recognition: The problem of compensating for changes in illumination direction[J].IEEE Trans Pattern Anal Mach Intell, 1997,19(7) :721-732.

共引文献38

同被引文献102

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部